• 2022-06-30
    求函数[tex=4.929x1.357]5XpnZqoKkH5pJppvM/fU2Q==[/tex]在抛物线[tex=2.786x1.429]GCz1DcLqiFvoVJPQTqawVw==[/tex]上点[tex=2.071x1.357]039XKwqUYA6WBS+yq/ZbHQ==[/tex]处,沿着这抛物线在该点处偏向[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]轴正向的切线方向的方向导数。
  • 解:先求切线斜率:在[tex=2.786x1.429]GCz1DcLqiFvoVJPQTqawVw==[/tex] 两端分别对[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex] 求导,得 [tex=4.0x2.429]WLSrjNyfMNlLdBKvXzOGefnfJxtV8R1y9IfRK+SHbJc=[/tex]于是 [tex=3.214x2.643]dXga0r4SJTh9I2AwV7inFrKcSEeOQmusDRTxQYHtMWQ=[/tex],[tex=6.071x3.0]fVBH917HuUtUx9Vnw+rOCMLHbuSNm6GS5irpGsVGtemzvirpxYwzJRQupwWxK2gQ[/tex]切线方向 [tex=3.214x1.357]0oqSLwzx5b+/geevbo55vP8/7M4sXO3fAAv/vwbT5QQ=[/tex],[tex=7.214x3.357]R5RlMdB+LRgK+mOmYgbmQzQ0ho5Vt/GWRQQF6Bye8SsYmqfPYOnGyJ6OLnOwDsPmuVWbB0yKzWDHZz9fU3doS501pkIkgzwH/635cTbzquc=[/tex]又 [tex=8.143x3.0]+tKiasYo8ZlgRh2VV+1D9PVE0oFRwzFOsD1HwuA0lL6oFaykVsc5cwet33oRRRBh4YYnOy4XUosWpfn821u/pZSWytBO+HX0jgljh2yKNO9Mb5rOOM225IzKEYXJajtT[/tex][tex=1.714x2.357]LLlpwrOk6AjpChs8bK/nwA==[/tex],[tex=9.857x3.0]+tKiasYo8ZlgRh2VV+1D9PVE0oFRwzFOsD1HwuA0lL7tq6pdFY03dOe7idaPeVUtPzvd4acBjEB9SN+gmrhfZpmCTC52PsK3xbKOx2XfEhs2Yg5vUpyL9wzNa5JBSz6I6lDSBy/TXS4B/1r7cclZNA==[/tex]故 [tex=4.0x3.0]+tKiasYo8ZlgRh2VV+1D9PVE0oFRwzFOsD1HwuA0lL7VrQxLkUpfdw6+tZc+61t8Y3PslEVdVP9YfRHdjD1kpw==[/tex][tex=9.857x2.643]YOX9UJ3sGoXnCeg1hFR7yL0kmxWZ9PSuw8S/GS02vsRWOOmqjmrcNYsdNhCJ9ILliYHoibupP28wDO9rO0u+zrqaKSCDergUHGjaE1HgHYEnKhJUPn7tYM8kLo1b7KIx[/tex].

    举一反三

    内容

    • 0

      抛物线[tex=5.357x1.429]M3P0ca1ia3LZynihVJi44A==[/tex]在哪一点的切线平行于[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]轴?在哪一点的切线与[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]轴的交角为[tex=1.429x1.071]kkPuS3Ory55IdulItii60Q==[/tex]?

    • 1

      函数()z()=()ln(()x()+()y())()在抛物线()y()2()=()4()x()上点()(1(),()2)()处(),()沿这抛物线在该点处偏向()x()轴正向的切线方向的方向导数为().

    • 2

      求曲线[tex=3.643x2.357]gtFPKV+bA1NEmbco+iU28g==[/tex]与[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]轴交点处的切线方程.

    • 3

      设[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]轴正方向到方向[tex=0.357x1.0]5vVfAZliYwqMw8JaLE+iEA==[/tex]的转角为[tex=0.714x1.0]y9ABqRCnjQW6yIa1BUBRPA==[/tex],使这导数有(1)最大值;(2)最小值;(3)等于0 。

    • 4

      求数量[tex=5.857x1.429]VKFoM816UMdVqsbVRThasO5ysnIv3jU7G38PQ09ED+c=[/tex]在点[tex=4.929x1.357]k23idjI4uC09lUnCkluKdg==[/tex]处沿[tex=7.929x1.429]F4qjQn31SuTwvOktb2XE5ob2REFvjp9Qcn2XSbzWCKg=[/tex]方向的方向导数。