[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]为直线上的有界集, [tex=5.643x1.286]8BNO4Hw3Y7FcABOSDHSxWwdFXy5qljTu5QXXuefLaNs=[/tex], 则对于任一小于[tex=0.571x1.286]QPadlhZ3vYN/Hi29gpTrFw==[/tex]的正数[tex=0.5x1.286]SIrTd7CGXw9GcBP//JIn6w==[/tex],存在[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]的子集[tex=1.143x1.214]T4nTAteHkBqm9ExuFPG05A==[/tex], 使[tex=4.214x1.286]ccS3LZLwGmhimE/fldk1tzvokjZvKeP6psegmvZSzJw=[/tex].
举一反三
- 少壮不努力([tex=0.571x1.286]QPadlhZ3vYN/Hi29gpTrFw==[/tex]),老大徒伤悲([tex=0.5x1.286]SIrTd7CGXw9GcBP//JIn6w==[/tex])
- 如图,[tex=3.143x1.286]REaUoNxha/GBn3DE8cgfDA==[/tex]是边长为4的正方形,[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]、[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]分别为[tex=1.571x1.286]cHJ4KDAad01mWuGaiQQpfA==[/tex]、[tex=1.571x1.286]hOo99m7YJCAnVf2cQGX8dQ==[/tex]的中点,则阴影部分的面积为[img=163x138]17e6c55620e728c.png[/img] A: 4 B: 5 C: 6 D: 7 E: 8
- 设 [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 在有界升集 [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex] 上一致连续, 证明:(1) 可将 [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 连续延拓到 [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex] 的边界.(2) [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 在 [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex] 上有界.
- 随机变量[tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex]分别以概率0.4、[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]、[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]和[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]取值1、2、3、4,并且[tex=3.071x1.286]fknOBgzbjEu52cPH0WBW3g==[/tex],[tex=3.071x1.286]UAJJxdfCoB8SKuppr0cT/w==[/tex].求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]、[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]。
- 证明对称阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 为正定的充分必要条件是: 存在可逆矩阵[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex], 使[tex=4.214x1.286]moaEH/9/mC9AV7cCql6Y7w==[/tex], 即 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与单位阵[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]合同.