证明:数域[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]上奇数级斜对称矩阵的行列式等于零.
举一反三
- 证明:数域[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]上任一[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级矩阵都可以表示成一个对称矩阵与一个斜对称矩阵之和,并且表法唯一.
- 设 [tex=4.429x1.357]oqaxMU7UPJdY7v/8BiumQA==[/tex], 其中 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 是数域. 分别用 [tex=2.357x1.214]b+19PhVr4qu1uqfrbbodNg==[/tex] 表示 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级对称、斜对称矩阵组成的子空间, 证明: [tex=4.286x1.214]nNSmDyf/r65Ge/sTLe8HjSAf5z9Jz4xszgdlGauZLfw=[/tex]
- 说明数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级斜对称矩阵组成的集合 [tex=1.214x1.214]dP6r3H0Vm1HmvZavqbdLOA==[/tex] 对于矩阵的加法与数量乘法, 形成一个线性空间, 求 [tex=1.0x1.214]++ZnQ9Yy0yDRqmUwKWQxMg==[/tex] 的一个基和维数 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上
- 说明数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级对称矩阵组成的集合 [tex=1.214x1.214]GdanU2m1RsjAMtjfG9rqyg==[/tex] 对于矩阵的加法与数量乘法, 形成 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上一个线性空间,求 [tex=1.0x1.214]hhEyiXsmUqGVtlGvWeNOYA==[/tex] 的一个基和维数.
- 证明:数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上与所有行列式为1的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵可交换的矩阵一定是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级数量矩阵.