举一反三
- 说明数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级斜对称矩阵组成的集合 [tex=1.214x1.214]dP6r3H0Vm1HmvZavqbdLOA==[/tex] 对于矩阵的加法与数量乘法, 形成一个线性空间, 求 [tex=1.0x1.214]++ZnQ9Yy0yDRqmUwKWQxMg==[/tex] 的一个基和维数 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上
- 说明数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级对称矩阵组成的集合 [tex=1.214x1.214]GdanU2m1RsjAMtjfG9rqyg==[/tex] 对于矩阵的加法与数量乘法, 形成 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上一个线性空间,求 [tex=1.0x1.214]hhEyiXsmUqGVtlGvWeNOYA==[/tex] 的一个基和维数.
- 证明:数域[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]上任一[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级矩阵都可以表示成一个对称矩阵与一个斜对称矩阵之和,并且表法唯一.
- 证明: 数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上每一个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 都可以表示成 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个一维子空间的直和.
- 说明数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级上三角矩阵组成的集合 [tex=1.286x1.214]DhmGulu5ewe0zEzEpnE7HA==[/tex] 对于矩阵的加法与数量乘法, 形成 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上一个线性空间, 求 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的一个基和维数.
内容
- 0
对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7; (2) 8; (3)10 ;(4) 14 ; (5) 15 (6) 18 。
- 1
设[tex=0.929x1.0]9MCaa3NdBrky4bnBPtTtgw==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵,[tex=1.286x1.071]mcwpV0HZfcjUtysCWsv1bA==[/tex]是[tex=0.929x1.0]9MCaa3NdBrky4bnBPtTtgw==[/tex]的伴随矩阵,则 未知类型:{'options': ['[tex=1.857x1.357]nB9mNOUKcr76IIi53ZsfkPx95v3/3E645aqs9iEzs/8=[/tex][tex=3.571x1.5]QSzDgFULXmCzbnmgEKrb3Zn8OXSEBfVdfe5eF4OBDmc=[/tex]', '[tex=1.857x1.357]nB9mNOUKcr76IIi53ZsfkPx95v3/3E645aqs9iEzs/8=[/tex][tex=2.214x1.357]vrsMnV55RRlJmEBE2zosJkkUD5j7cS8a2dnYwhxzauA=[/tex]', '[tex=1.857x1.357]nB9mNOUKcr76IIi53ZsfkPx95v3/3E645aqs9iEzs/8=[/tex][tex=3.357x1.571]7uRzEjzFjrMzO+xZBgb4yXULVEvsDm7HHXd6y2aKp/abu5FwaB3E1jiJHen+pNR5[/tex]', '[tex=1.857x1.357]nB9mNOUKcr76IIi53ZsfkPx95v3/3E645aqs9iEzs/8=[/tex][tex=3.143x1.5]/EaSgzJ4qZa3HYxz9e+RnoxEjoZ/OCot5p/Okz3sgoQ=[/tex]'], 'type': 102}
- 2
求下列线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵全体组成的线性空间;
- 3
证明:如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是数域[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级矩阵,且满足[tex=7.286x1.5]don22hM0FLkfIFASwvstacWj4l9ufYh2zpqW1mHjUjA=[/tex]则[tex=3.857x1.357]MSvIjHOmBElTvuTQXmtV5w==[/tex].
- 4
求下列线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶反对称矩阵全体组成的线性空间.