证明方程 [tex=8.071x1.357]Rmy12Umie4RblzB2kOfDsmfpqZ+uA50dfMmjRpbcX3k=[/tex] 在(0,1) 内有唯一实根.
举一反三
- 方程 \({x^3} + 3{x^2} - 1 = 0\) 在 \((0,1)\) 内有一个实根 .
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 在 [0,1]上具有2阶导数,且[tex=3.643x1.286]33dm3ityTTemCRc5ZsxYkQ==[/tex],[tex=6.571x2.071]9i81kkdiF6aVLw4Z6boxnO7AgoAJz706lR8BAxhRfN53UFSbREToGNjosBflfRksjuR47v1Wf5g1CtgCe2NVNw==[/tex] ,证明:(1)方程[tex=3.714x1.286]0ZoDYEiHpPjb6Gw3Oeomrg==[/tex] 在区间 (0,1)至少存在一个实根;(2)方程 [tex=11.5x1.929]0doxqw2d0aQzw6OeeZxb/bs8P31eHb+5ooXhPxTaxtRxhKSFUcc70MME3syAEJimy7s/+WkFCqXnLOUT77uBwceLCnBUJn/gEZZDrXHET0ToWDYMUpvWn71bViLDAhFgkVtuerPetZ7T48N20ZmPiQ==[/tex]在区间(0,1)内至少存在两个不同实根.
- 试证明方程[tex=9.357x1.286]R/e1gR8Mb9xJMw7upDcXSF1rNTtRlyqnLFImldDkBXU=[/tex]在区间(0,1)内有唯一的实根,并用二分法求这个根的近似值,使误差不超过0.01。
- 证明方程[tex=5.929x1.357]8mdTBUIsKpQbYU05fzsrjA==[/tex]当[tex=3.929x1.071]BTCIqXvL+UeMG+M4qvh2dEMzQ0vRowuzEjIUcHvPgpM=[/tex]时有两个实根;当[tex=5.786x1.071]qYSOIl2YNhki7w6e90afIo2XTSzTHwHIwFSNgrr21jM=[/tex]时没有实根;当b<0时有唯一实根。
- 证明方程[tex=7.214x1.357]Yc/lztHvy+6XUANIKa+umgbeuxwKYHDaRiHN/5FLA58=[/tex]在区间[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]内有唯一个实根;使用二分法求这一实根,要求误差不超过[tex=3.929x2.357]P6uidfEImc5vmG7Z7jgYkEqlPuW6vWuMec8PieUrl0Q=[/tex]。