证明:[br][/br]方程[tex=5.357x1.357]iVQNzwJN3EtObjjo5g5B1w==[/tex]([tex=0.5x0.786]H94ItHP9PspVDDqF8nLRWA==[/tex]为常数)在区间[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]内不可能有两个不同的实根;[br][/br][br][/br]
举一反三
- 证明:方程[tex=5.357x1.357]dXo+XJodicgR0WhuRlhAiFkjo6i51jqrjbBgCRI88dA=[/tex](这里[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]为常数)在区间[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]内不可能有两个不同的实根
- (1) 叙述无界函数的定义;[br][/br](2) 证明: [tex=4.0x2.357]Skzfc0ZxjrbUnQ48HU5E0tXmPoDSwwji7Ikqu4Ix2eQ=[/tex]为 [tex=2.286x1.357]IVQHL7gpVvGMeTU2JgKtIg==[/tex]上的无界函数;[br][/br](3) 举出函数[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]的例子,使[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]为闭区间 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]上的无界函数。
- 设[tex=2.571x1.214]oMKnVwNaqub9jnnF2gwYyw==[/tex] . 证明方程[tex=5.357x1.357]9HRNZaCQksLX5uJtD+7Otw==[/tex]不存在正根.[br][/br][br][/br]
- 证明方程[tex=2.786x1.0]Jvnvstv0CqMyhHsTh6s9FQ==[/tex]在区间[tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex]内有且仅有一个实根[br][/br]
- 证明:方程[tex=5.429x1.214]unY/GxrtAwP+9oZ/4P89yQ==[/tex]([tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]为正整数,[tex=1.429x1.0]EHzsglf5n1gYY95L4Z4giQ==[/tex]为实数),当[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]为偶数时至多有两个实根,当 [tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]为奇数时至多有三个实根.[br][/br][br][/br]