17e0b68b402e058.jpg,计算函数极值的实验命令为().
A: symsx; f1='sqrt(2*x-x^2)';fplot(f1,[0,2])f2='-sqrt(2*x-x^2)';[f2min,fval]=fminbnd(f2,0,2);f1max=f2minf1max =1.0000
B: symsx; f1='sqrt(2*x-x^2)';fplot(f1,[0,2])[f1min,fval]=fminbnd(f1,0,2);f1min =1.0000
A: symsx; f1='sqrt(2*x-x^2)';fplot(f1,[0,2])f2='-sqrt(2*x-x^2)';[f2min,fval]=fminbnd(f2,0,2);f1max=f2minf1max =1.0000
B: symsx; f1='sqrt(2*x-x^2)';fplot(f1,[0,2])[f1min,fval]=fminbnd(f1,0,2);f1min =1.0000
举一反三
- 设f1(x)和f2(x)为二阶常系数线性齐次微分方程y″+py′+q=0的两个特解,若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件?() A: f1(x)f′2(x)-f2(x)f′1(x)=0 B: f1(x)f′2(x)-f2(x)f′1(x)≠0 C: f1(x)f′2(x)+f2(x)f′1(x)=0 D: f1(x)f′2(x)+f2(x)f′1(x)≠0
- 设f1(x)和f2(x)为二阶常系数线性齐次微分方程y''+py'+q=0的两个特解, 若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件?() A: f1(x)*f'2(x)-f'1(x)*f2(x)=0 B: f1(x)*f'2(x)-f'1(x)*f2(x)≠0 C: f1(x)*f'2(x)+f'1(x)*f2(x)=0 D: f1(x)*f'2(x)+f'1(x)*f2(x)≠0
- 要求以下线性规划问题的最大值fmax[img=202x71]18031915b48307d.png[/img]则MATLAB代码应为 A: f=[2;1;-1];A=[-1 -1 -1;3 2 0];b=[0;30];[x,fval] = linprog(f,A,b);fmax=-fval B: f=[-2;-1;1];A=[1 1 1;3 2 0];b=[0,30];[x,fval] = linprog(f,A,b);fmax=fval C: f=[-2;-1;1];A=[-1 -1 -1;3 2 0];b=[0;30];[x,fval] = linprog(f,A,b);fmax=-fval D: f=[2;1;-1];A=[-1 -1 -1;3 2 0];b=[0,30];[x,fval] = linprog(f,A,b);fmax=fval
- 17e0b849b7d64bd.jpg,计算[img=19x34]17e0ab14a855463.jpg[/img]实验命令为(). A: syms x;f=diff(asinsqrt(x))f=1/2/x^(1/2)/(1-x)^(1/2) B: f=diff(asin(sqrt(x)))f=1/2/x^(1/2)/(1-x)^(1/2) C: syms x;diff(asin(sqrt(x)))f=1/2/x^(1/2)/(1-x)^(1/2)
- 17da42840675a6d.jpg,计算[img=19x34]17da4275482315f.jpg[/img]实验命令为(). A: syms x;f=diff(asinsqrt(x))f=1/2/x^(1/2)/(1-x)^(1/2) B: f=diff(asin(sqrt(x)))f=1/2/x^(1/2)/(1-x)^(1/2) C: syms x;diff(asin(sqrt(x)))f=1/2/x^(1/2)/(1-x)^(1/2)