A: 8
B: 6
C: \(4dx + 2dy\)
D: \(8dxdy\)
举一反三
- 下列方程中,不是全微分方程的为( )。 A: \(\left( {3{x^2} + 6x{y^2}} \right)dx + \left( {6{x^2}y + 4{y^2}} \right)dy = 0\) B: \({e^y}dx + \left( {x \cdot {e^y} - 2y} \right)dy = 0\) C: \(y\left( {x - 2y} \right)dx - {x^2}dy = 0\) D: \(\left( { { x^2} - y} \right)dx - xdy = 0\)
- 函数\(z = {\left( {xy} \right)^x}\)的全微分为 A: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + x{\left( {xy} \right)^x}dy\) B: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) C: \(dz = {\left( {xy} \right)^x}\ln xydx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) D: \(dz = {\left( {xy} \right)^x}\left( {1 + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)
- 由\( y = {x^2} - 1,\;y = 0 \)围成的平面图形面积可表示为( )。 A: \( \int_{ - 1}^1 {\left( { - {x^2} + 1} \right)} dx \) B: \( \int_{ - 1}^1 {\left( { { x^2} - 1} \right)} dx \) C: \( \int_0^1 {\left( { - {x^2} + 1} \right)} dx \) D: \( \int_0^1 {\left( { { x^2} - 1} \right)} dx \)
- \( \int_0^1 {dx} \int_ { { x^2}}^x { { {\left( { { x^2} + {y^2}} \right)}^{ - {1 \over 2}}}dy} \) =( ) A: \( \sqrt 2 + 1 \) B: \( \sqrt 2 - 1 \) C: \( \sqrt 2 \) D: \( \pi \)
- 函数\(z = {e^ { { x^2} - 2y}}\)的全微分为 A: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx +2{e^ { { x^2} - 2y}}dy\) B: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx - 2{e^ { { x^2} - 2y}}dy\) C: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy+ 2{e^ { { x^2} - 2y}}dx\) D: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy - 2{e^ { { x^2} - 2y}}dx\)
内容
- 0
设X与Y相互独立,且DX=4,DY=2,随机变量Z=3X-2Y,则DZ=(). A: 8 B: 16 C: 28 D: 44
- 1
以点\( (2, - 1,2) \) 为球心,3为半径的球面方程为( ) A: \( {\left( {x + 2} \right)^2} + {(y - 1)^2} + {(z + 2)^2} = 9 \) B: \( {\left( {x + 2} \right)^2} + {(y - 1)^2} + {(z + 2)^2} = 3 \) C: \( {\left( {x - 2} \right)^2} + {(y + 1)^2} + {(z - 2)^2} = 9 \) D: \( {\left( {x - 2} \right)^2} + {(y + 1)^2} + {(z - 2)^2} = 3 \)
- 2
设\(f\left( {x,y,z} \right) = x{y^2} + y{z^2} + z{x^2}\),则\({f_{yz}}\left( {0,-1,0} \right) = \)( ) A: 1 B: 0 C: -1 D: 2
- 3
曲线\( \left\{ {\matrix{ { { x^2} + {y^2} = {z^2}} \cr { { z^2} = y} \cr } } \right. \)在坐标面\( yoz \) 上的投影曲线方程为( ) A: \( \left\{ {\matrix{ { { x^2} + { { \left( {y - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \) B: \( \left\{ {\matrix{ { { z^2} = y} \cr {x = 0} \cr } } \right. \) C: \( \left\{ {\matrix{ {z = {y^2}} \cr {x = 0} \cr } } \right. \) D: \( \left\{ {\matrix{ { { y^2} + { { \left( {x - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \)
- 4
已知\( y = {x^2} + 4x \),则\( dy \)为( ). A: \( (2x + 4)dx \) B: \( 2xdx \) C: \( ({x^2} + 4)dx \) D: \( ({x^2} + 4x)dx \)