已知\(z = {x^2} + {y^2}\),则在\(\left( {2,1} \right)\)处的全微分dz = ( )
A: 8
B: 6
C: \(4dx + 2dy\)
D: \(8dxdy\)
A: 8
B: 6
C: \(4dx + 2dy\)
D: \(8dxdy\)
举一反三
- 下列方程中,不是全微分方程的为( )。 A: \(\left( {3{x^2} + 6x{y^2}} \right)dx + \left( {6{x^2}y + 4{y^2}} \right)dy = 0\) B: \({e^y}dx + \left( {x \cdot {e^y} - 2y} \right)dy = 0\) C: \(y\left( {x - 2y} \right)dx - {x^2}dy = 0\) D: \(\left( { { x^2} - y} \right)dx - xdy = 0\)
- 函数\(z = {\left( {xy} \right)^x}\)的全微分为 A: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + x{\left( {xy} \right)^x}dy\) B: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) C: \(dz = {\left( {xy} \right)^x}\ln xydx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) D: \(dz = {\left( {xy} \right)^x}\left( {1 + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)
- 由\( y = {x^2} - 1,\;y = 0 \)围成的平面图形面积可表示为( )。 A: \( \int_{ - 1}^1 {\left( { - {x^2} + 1} \right)} dx \) B: \( \int_{ - 1}^1 {\left( { { x^2} - 1} \right)} dx \) C: \( \int_0^1 {\left( { - {x^2} + 1} \right)} dx \) D: \( \int_0^1 {\left( { { x^2} - 1} \right)} dx \)
- \( \int_0^1 {dx} \int_ { { x^2}}^x { { {\left( { { x^2} + {y^2}} \right)}^{ - {1 \over 2}}}dy} \) =( ) A: \( \sqrt 2 + 1 \) B: \( \sqrt 2 - 1 \) C: \( \sqrt 2 \) D: \( \pi \)
- 函数\(z = {e^ { { x^2} - 2y}}\)的全微分为 A: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx +2{e^ { { x^2} - 2y}}dy\) B: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx - 2{e^ { { x^2} - 2y}}dy\) C: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy+ 2{e^ { { x^2} - 2y}}dx\) D: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy - 2{e^ { { x^2} - 2y}}dx\)