若集合P={1,2,3,4},Q={x|0<x<5,x∈R},则( )
举一反三
- 令P:3>-2;Q(x):x≤3;R(x):x>5;a:3;个体域{-2,3,5,6}; 则谓词公式∀x(P→Q(x))∨R(a)的真值= 。
- 设P(),Q(),R()均为x的多项式,且P(x^3)+xQ(x^3)=(x^2+x+1)R()<br/>, 则这三个多项式P(),Q(),R()的公共根为(<br/>). A: x=1 B: x=0 C: x=-1 D: x=2
- 已知集合P={x|x(x-3)<0},Q={x||x|<2},则P∩Q=______.
- 假设个体域D={1, 2, 3, 4, 5, 6},P(x):x是偶数,Q(x):x>0 ,R(x):x>6则[img=60x22]17e446cee76fe2e.png[/img]的真值为1;
- 用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数;前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x));结论:∃x(R(x)∧Z(x))。(1)∃x(Q(x)∧Z(x))P(2)Q(c)∧Z(c)ES(1)(3)∀x(Q(x)→R(x))P(4)Q(c)→R(c)US(3)(5)Q(c)T(2)I(6)R(c)T(2)(4)I(7)Z(c)