[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵的伴随矩阵的秩只能是0,1或[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] .
举一反三
- 证明:与所有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵可交换的矩阵一定是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级数量矩阵.
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶对称矩阵,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶正交矩阵,证明[tex=3.286x1.214]gOs/eXCB4zyspRW4NZ7Kog==[/tex]也是对称矩阵。
- 设[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]为[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶实对称矩阵,试求[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶实对称矩阵[tex=0.929x1.0]ep004cu6Ev4qhlMpamsNGg==[/tex],使得[tex=2.929x1.214]+HNIZcMaSzNwCe0LO7bsUtwNnXpVzRFjUjK29jinxk+bU2SGJ3h/vDuUc4GSQZIq[/tex].
- [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]与对角矩阵相似的充要条件是 未知类型:{'options': ['[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个互不相同的特征值', '[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个互不相同的特征向量', '[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个线性无关的特征向量', '[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个两两正交的特征向量'], 'type': 102}
- 需要用多少字节来编码[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]位的数据,其中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]等于7