证明:设[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]为[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶可导函数,若方程[tex=3.714x1.357]65B6ryUjJi4PhOvbjiu/QQ==[/tex]有[tex=2.357x1.143]dkoxwOpyXKTw0HsOj3nnBg==[/tex]个相异的实根,则方程[tex=4.286x1.571]3THDkxXoH5jNbppVJeKXnZjj/TneSDa/d0wrlQKn4VY=[/tex]至少有一个实根。
举一反三
- 设多项式[tex=11.929x1.5]/BW5J5++kVMFWzdrQ6Ida12tnmyBxnK7QVJT+n1UdDTFw507FiNp3lcCJ/U0MLAu[/tex],证明:当[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]为奇数时,方程[tex=3.714x1.357]DjBmmEFTeKa7pyTdYMjftw==[/tex]至少有一实根..
- 证明:方程[tex=5.429x1.214]seu1lQOKNCh8wONfSVlIZOFmKx0cH153Yq71j4/XQWg=[/tex]([tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]为自然数,[tex=1.429x1.0]v8UridUAt1ToVuEmo4slUA==[/tex]为实数)当[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]为偶数时至多有两个实根;当[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]为奇数时至多有三个实根
- 图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个顶点,[tex=2.357x1.143]dkoxwOpyXKTw0HsOj3nnBg==[/tex]条边,证明[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中至少有一个顶点度数大于等于[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]。
- 令 [tex=5.286x2.5]w4Zp42THVdKRUWaWh6McXYYT5+hmuP5oUewyYwttvP5YQmoSpB8VAdR1QL77qYOj[/tex] 是实系数三次方程 [tex=6.214x1.429]WdQf/RlC+T6vYuYi+YX4MA==[/tex] 的判别式, 求证:(1) 若 [tex=2.714x1.071]kzJdFf4nPeXKhbtP01JMCg==[/tex], 则方程有 1 个实根和 2 个共轭复根;(2) 若 [tex=2.143x1.0]au1nduhIYgjkxMPZw2ynrQ==[/tex], 则方程有 3 个实根, 其中 2 个根相同;(3) 若 [tex=2.714x1.071]8c95v2LCoentTCU4dmXp6g==[/tex], 则方程有 3 个互不相等的实根.
- 设[tex=3.714x1.357]1wcc6vqE76k/eJ2Xobhi2g==[/tex],若[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上恒不为0,则[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上恒为正(或负)