• 2022-10-29
    计算下面对面积的曲面积分:[tex=8.643x2.643]Zabh7S34lJSKhDmNbsK1eMLdzAIFDj+Xcq0BDTMTJTlFwbyHC21Fy0ZxcWok6Iqk[/tex],其中[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]为锥面[tex=5.929x1.286]tN1kgP+8DeZ0qNq4KOOW8W9COUYHgNeiveZcv68wSxM=[/tex]被[tex=6.0x1.286]9bZQpSYifgquBYPcQEiZp7qrLQoAvphlK0Cd+MZ/5MA=[/tex]所截得的有限部分。
  • 解  [tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]:[tex=5.929x1.286]tN1kgP+8DeZ0qNq4KOOW8W9COUYHgNeiveZcv68wSxM=[/tex],[tex=8.5x1.286]d/eYeNj7z2x492s8J1MP/HLy92SPAPXVJuShDp9z2pvhp9blEwejZKynh1W+3Bom[/tex],[tex=14.929x1.786]D+JF8Wu6CGrjUkJpI9yD+/lh5yvKnoQAqi4hR3FEBwWDNz7lS2y/JE38VGPL0Bh+KylpZ0igxEjBvGKW3F4E2Q==[/tex],[tex=23.714x14.214]Zabh7S34lJSKhDmNbsK1eMLdzAIFDj+Xcq0BDTMTJTljTdyvYT7+Q/Dmiu0Rtu970IwxgA808gmcOhFsmS8vf7r7zNqmAkyqj1QjCZ39tmLPh9zVZlYK7ksSLax1G6nQ8g/iMzO+z2H5htFPapKZRvP+AxsPqdav+jTp9deDmcFY1m14sVAKC1xvhZvfGclpRCVTAa8H4RYK7MZbwtzRc88rZNLzpO9rJRVT3Sm2gSb6j4P5EJkCOfqxt/3Iovnm29YFS/O24qB+p6UMiYWI2FQ+CRmrfSvNmmdBYnKs4tSELA+lNC9XPK3W3+UWz0+WvxUfR/ZhZOqQrt79g5qncQZMwFPOpWEqcnUdc4Nj0IKDWS0+1eV2/Xscto1SZEfkCCQnyTPC8yXDPqVfvWBylFxQZUm12C5F8Xyyyns1wIj4zFQri5R4AIz3qpVDWKBm8UapAKDaGDNfD2vQ3gdrqzrpj1hrlcevmpEO0QECJ7FYcmWalAwK3wtqG4WAD9GDO9f8EgnUp7GtI5XPJjKc8rifVuChO1c06bdFSubzmpxqZX/ZBOvKAOclbCt7tX0BsSmW5FDhDkIMIOh3Q4PSMA695XR3Kf1J6jizoMYued7RAqwozsoTi5wQhajiI9uY[/tex]提示:[tex=15.286x2.929]Jtq6TdD05YCkVLImyihoZ8cuatt0FLEm5kp5whnsHvI1CQbXvVyBDWn0hGgY7FtabFAE4Iw+bgQQkRWbDUQtxYnuLIra2PG+HDC0GxV66Jo=[/tex]

    举一反三

    内容

    • 0

      set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}

    • 1

      设二维离散随机变量[tex=2.5x1.357]PWg5V4GQQafckGNgbx6gmw==[/tex]的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 各自的边际分布列.

    • 2

      计算下列对坐标的曲面积分:[tex=9.714x2.643]Zabh7S34lJSKhDmNbsK1eJKDXOo37nf6BkS83i2cB8iPNPygOWD46cTspF1Y6dtj[/tex][tex=9.286x1.286]7P852iYqiS2X7uRBinRDozQ2DlT6qWWuwGdU8as3n30=[/tex][tex=8.857x1.286]5yPytvk3nJrQnQH2+A/1vzzGXkBDWqxDjGrSWgQ4GsU=[/tex],其中[tex=3.714x1.286]PsAK467U1/a1oG7egZ+PGQ==[/tex]为连续函数,[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]是平面[tex=5.714x1.286]mgjpMdBcj+k9zMo7JVExxA==[/tex]在第四卦限部分的上侧。

    • 3

      计算下列对坐标的曲面积分:[tex=6.5x3.357]VfNPe2HWaI4MUpES7+XJY2u5FX4nfhwKkrq1QMbcbAG+xzWAR0Cfimnai7QNlyu8[/tex][tex=12.5x1.286]p1e3z4WXRJgZFGmZGfkZrJ+LHlSk1WpTvS5M4e4R4rM=[/tex][tex=8.286x1.286]EDFWdFcLhwSC1ugpx9MsFbQhnYMjJAsXmW/tGuwy1/E=[/tex],其中[tex=3.714x1.286]JCUVUcOaf8d7OiYJ9g0q+Q==[/tex]为连续函数,[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]是平面[tex=5.714x1.286]mgjpMdBcj+k9zMo7JVExxA==[/tex]在第四卦限部分的上侧。

    • 4

      设曲面[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]是上半球面:[tex=9.357x1.5]ZqZWTnYSAeUMEuhHenqKYVPBZYOObBXN/w5UKwHidBoXWThG3Br5K6oy9KJOUmLL[/tex],曲面[tex=1.143x1.286]FsVAlXm5BjIMu/jbNI+0IA==[/tex]是曲面[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]在第一卦限中的部分,则有 未知类型:{'options': ['[tex=9.714x2.786]Zabh7S34lJSKhDmNbsK1eMsddMs12Bg0Z8MHMMmDmcQhpDghFyxN/RfTE64awPQsmoUoLGkhr4bYEhMSnAUtVg==[/tex]', '[tex=9.643x2.786]Zabh7S34lJSKhDmNbsK1eL0OcQjO8Rg9T7xwK1mlI+JVwDudarC9zFQ7UURmNy+xiLTdhWI/xwtHGPOeIcQtCw==[/tex]', '[tex=9.571x2.786]Zabh7S34lJSKhDmNbsK1eFcxFDZG7i7fjw99PqZLl2RJLXNT7D1r0LyAOm6BYE5WJN/nL9YkZqZCkJTnY5uvgw==[/tex]', '[tex=11.643x2.786]Zabh7S34lJSKhDmNbsK1eNgV4FlWIHMq/B9cUTfk+FhrwtldFLkgKdMkK96+1tmeSi8b81PeXWZdqvjHaqJPsg==[/tex]'], 'type': 102}