• 2022-10-26
    设离散随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从几何分布[tex=17.5x1.5]KPFxMSPUQUIZhyq5BPuTKCOda8KR1Zm3etPi0jQGRiEPvO51R3y7S+wYlbhVLj4d[/tex]试求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的特征函数. 并以此求[tex=2.357x1.357]y0JP40XwxAEl4j7GgRfsFw==[/tex] 和[tex=3.214x1.357]iMO1fBS6u6quko082x6jeou7kAZXk7z/hzlRo2Nl77E=[/tex].
  • 解:特征函数[tex=30.071x3.429]O2QuJWPVpDu9fA29gv8bheZtLi6/jfH1MJ5xK5K4AnUJ7gYfb/RQEWC+vQHH0GdoN02Tl/DSpS/ZJs0PDb6vLo2s4ZcMroijk8hjbLGu+oVZENVl64HbfJhU2hM7rZeTaetnQDxUSqDeoGvNY5WJy+5qQwFr13nEYqz/uYs1O0oMxN7XNerwogQuyjQQDASCSVk4dSed4qutc9YV78JBl6UaDRGjvhyjq6K1SZN1Ben8NlrNqnY/bKp9iFC+GoYFXwvx+qoH7nv6aIBKUk5npQ==[/tex]因 [tex=32.143x3.0]eSQGtNAShC0fG0saOodoN0kWqpcUEI9eGSwk+g6e37tYAjsGMzNfrRZtNxp3WDs37zEY4pqxPuCRe+mpB8M86EuTg+BkSyDTPHIZfeKY9R4cO5YGFAgq9eBQSa3BPkp4PU+EoFR/kUXakNh47Xr0Q6AZmovh/yv0/UEFG+WXIdAUqyVnoB297QkJck0HvfTePGgGVELLwaSi+nPYRj8XeYt2E7vn8jseAKuHxrMBm1+2Zyx/3mw07CaEodlcKMb4a2i89K6CcCHSyZzlvQIiXiMrwnZTfaJxg5WWoQuK4Upvlulnk9diHqWqskVlMgR8xjChPd+sVbOpnNt3//GWPBrQ6WbnefxdNVtlqEpk0fDCexvV2X6rruCzIl4Mc0eD[/tex]有 [tex=11.0x2.571]eSQGtNAShC0fG0saOodoN0Z4QwyzPkhdlTpL9g0tbWSrUeanAm1weCQGxuAZ0fEXek7vwz9tlpwO3WqOvBw2jA==[/tex]故 [tex=4.929x2.571]lV2aKQNk6W+WhXU59dIhZTeC1j2uvXYlIusk8HhubNg=[/tex]因[tex=43.714x3.0]eSQGtNAShC0fG0saOodoNy/r1vfpN18dRPo9f0Eqqa6PQwbK5ct3cz73a+639ojx9bsNGR9dtwv69GKZunfipBvfThKCDqu5n8EORIFI+ndfNFA6pxv75Z+DLIoGSqPq7M4Kz83UHFvjoIENf6JW6w8mRSUjbMXLSqyWZCulsi54LGV0sR/HsS1lXh4T0XYucAPH3z+4gPaiuJGv251bfzhRnXm4iBn3AwUVY8e1zY40gfAG/kN4SO0Jw0wQGNUd/ZUw9huAlcCrOnsjWVnLQzF/jEAf9MpUKVSuPzYK7Kz3AVkXlWs9Vjg4w8uUgUTKzVJRQ1X4IMqx7pPg/2WdGguECKjDRj52zL1ZF46jF/71B8bYsPFxj8OD/JHZhfrbL9fOzJT2m10wINznzqT86WNk6dn84j5b7985HrCmao8z9NaqIEzbCyaTX34BXOCOOwPLZsW8DHQCogJYVC5WFg==[/tex]有 [tex=18.643x2.643]eSQGtNAShC0fG0saOodoNwbsAfadM7Y4EYz212dzRrBqvzNWrsJStbdxoF3+cbOxHkvVrCVV3f6H9a5hjz9OzVNh7fhFc5jh7IWg++ULRj0Jcw9jUMcR3MgVeAdMk9+GLWYwz/3cUV8eSs/4UVa7PA==[/tex] 可得 [tex=7.357x2.571]oibOEPzqOMutspJWiy6hN49+jFWIg/z1Z+ppEvcgRcoWmI9UgdFRtAkgt42aP1Ce[/tex]故[tex=15.071x2.929]iMO1fBS6u6quko082x6jesGCVaNZ4t7OAisFO0P5BDQZY3rv833tRMv8GB3Ah1D4WYVGooldi/ft2kXgHylzO+7BzaasYGKteg5VB/LYfz4fkDwM3TPRv7+iL5m/RPKA[/tex]

    内容

    • 0

      已知随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=13.0x2.357]nHHN4pLpj1G1uhQpyLUatreMse16BhxCX+nm8cZ5nxW1R+KIjomlLFfyrFplv9mykQ0cFIpaQRbRTlU90WEwNA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数.

    • 1

      已知离散型随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布列为: [tex=17.929x1.357]ikQ9bj0jXqEsK0iZGG38patjGiNNp2skUum208IHQDrgM02liZ3vl6bkit9icGZY[/tex] 试写出 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数。

    • 2

      假设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]在圆域[tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex]上服从联合均匀分布.(1) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的相关系数[tex=0.857x1.0]OD3VmuyZiq/0isb82QS4WA==[/tex](2) 问[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否独立?

    • 3

      设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]

    • 4

      设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.