${X_1},{X_2},...,{X_n}$是来自二项分布总体
X~b(n,p)的样本,用最大似然估计法估计参数p得()
A: $\frac{1}{n}\overline X
$
B: $\frac{1}{n}(\overline X-1)
$
C: $\frac{1}{n-1}\overline X
$
D: $\frac{1}{n+1}\overline X
$
X~b(n,p)的样本,用最大似然估计法估计参数p得()
A: $\frac{1}{n}\overline X
$
B: $\frac{1}{n}(\overline X-1)
$
C: $\frac{1}{n-1}\overline X
$
D: $\frac{1}{n+1}\overline X
$
举一反三
- ${X_1},{X_2},...,{X_n}$是来自均匀分布X~U(-a,a)的样本,用矩估计法估计参数a为() A: ${(\frac{3}{n}\sum\limits_{k = 1}^n {x_k^2} )^{\frac{1}{2}}}$ B: ${(\frac{2}{n}\sum\limits_{k = 1}^n {x_k^2} )^{\frac{1}{2}}}$ C: ${(\frac{3}{n}\sum\limits_{k = 1}^n {x_k} )^{\frac{1}{2}}}$ D: ${(\frac{2}{n}\sum\limits_{k = 1}^n {x_k} )^{\frac{1}{2}}}$
- 函数$y=\ln x$的$n$阶导数为 A: $\frac{(n-1)!}{x^n}$ B: $\frac{n!}{x^n}$ C: $(-1)^{n-1}\frac{(n-1)!}{x^n}$ D: $(-1)^n\frac{(n-1)!}{x^n}$
- ${X_1},{X_2},...,{X_n}$是来自正态总体X~N($\mu$ ,${\sigma ^2}$)的样本,用估计法估<br/>计参数$\mu,{\sigma^2}$,分别为() A: $\overline X ,2{s^2}$ B: $2\overline X ,{s^2}$ C: $\overline X,{s^2}$ D: $\overline X,s$
- 2.${X_1},{X_2},...,{X_n}$是来自正态总体X~N($\mu$ ,${\sigma ^2}$)的样本,用估计法估<br/>计参数$\mu,{\sigma^2}$,分别为() A: $\overline X ,2{s^2}$ B: $2\overline X ,{s^2}$ C: $\overline X,{s^2}$ D: $\overline X,s$
- 下面级数求和错误的是 A: $\sum_{n=0}^\infty q^n = \frac{1}{1-q} (0\lt q\lt1) $ B: $\sum_{n=1}^\infty \frac{x^{2^{n-1}}}{1-x^{2^n}} = \frac{x}{1-x} (|x|\lt 1) $ C: $\sum_{n=1}^\infty \frac{1}{{n!}} = e $ D: $\sum_{n=1}^\infty \frac{x^{2^{n-1}}}{1-x^{2^n}} = \frac{1}{1-x} (x>1) $