下列方阵的集合按照矩阵的加法和数乘运算构成实数域上的线性空间的是( )。
未知类型:{'options': ['实数域上的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵全体', '实数域上秩为[tex=1.929x1.143]qMmLG3OT6I+UYFeehawKuA==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵全体', '实数域上的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵全体', '实数域上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶正定矩阵全体'], 'type': 102}
未知类型:{'options': ['实数域上的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵全体', '实数域上秩为[tex=1.929x1.143]qMmLG3OT6I+UYFeehawKuA==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵全体', '实数域上的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵全体', '实数域上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶正定矩阵全体'], 'type': 102}
举一反三
- 判别以下集合对于所指的运算是否构成实数域上的线性空间?[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵的全体,对于矩阵的加法和数乘运算。
- 证明:实数域 [tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex] 上全体[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵的集合[tex=3.357x1.357]FvVdeF29yC+Nf//tT6N+GUB7AAHsX5hJirCXmafOgyg=[/tex] 关于矩阵的加法构成一个交换群。
- 验集合对指定的运算是否构成实数域上的线性空间。全体 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称(反对称、上三角形,可逆)矩阵,对于矩阵的加法和数量乘法。
- 判别以下集合对于所指的运算是否构成实数域上的线性空间?主对角线上各元素之和为零的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵的全体,对于矩阵的加法和数乘运算。
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶正定矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵,证明: 存在[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使得[tex=9.143x1.429]XRMmUOtjtKMyseaeIn9jPM1TnNKlMhqAAioUZ3jWn/FX+SyCCFosC01uB/CWa/Kl[/tex], 其中[tex=0.714x1.0]AiT6fhT2pvop+UvpD2oClg==[/tex]为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶对角矩阵。