设X是一个[tex=1.0x1.286]rIp/+zQfCOBqyYIT+1a8eg==[/tex]空间,证明:如果X有一个基只有有限个元素,则X是个只含有有限多个点的离散空间。
举一反三
- 设X是一个度量空间,证明:如果X有一个基只含有有限个元素, 则X必为的只含有有有限多个点的离散空间。
- 设[tex=2.571x1.357]RUJ/Tt2raOklywg1mc6VVQ==[/tex]为度量空间,并且[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]有一基只有有限个成员,证明[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]必为只含有有限个点的离散空间。
- 设Y是拓扑空间X的一个子空间,[tex=2.5x1.286]eE5MadPLJiAKqfDF0T7eGg==[/tex],证明:如果L是X的一个子基,则[tex=1.571x1.286]Kzx1vlQmylEt2nofDvFV/A==[/tex]是Y的一个子基。
- 由非空集合X的所有子集构成的集合称为X的幂集,记作[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(1)设X={a,b,c},求[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(2)设X是由n个元素组成的有限集,证明[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex]中含有[tex=1.0x1.0]j//x0/Z+ltpf5R8ThFOpMA==[/tex]个元素.
- 离散型随机变量X只取有限个或可列个数值.( )