• 2022-11-04
    元素属于实数域[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的[tex=2.286x1.143]lL/KTIAdeAGi+eDPP+Lq6A==[/tex]矩阵,按矩阵加法和矩阵与数的乘法构成数域[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上的一个线性空间。令[tex=6.429x2.786]I+EGXKUo/igvv1JkJ3Ur5Lo9GydmNBEEzbl1HNaWi+2n9rFZ3LqbRMwK3SoqwD+zDT/MHsKZ9WyS9J/1oLNUEg==[/tex],在这线性空间中,变换[tex=9.214x1.357]fYQKpj9eA6w0E+c7xg7Ni1mcuzfO4FLY15xpBgPIMI8=[/tex]是一个线性变换,试求[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的核的维数与一个基。
  • 解 方法一.取[tex=2.071x1.214]13D/oDLVZLkBW+EZeNaeXh9rCuBUvBzeWBF1RVZMiOI=[/tex]的一组基[tex=6.857x2.786]GVe38DvhpjUr6Z/thsYvRHvXDSGoElNBBlrxXd9K3ROridaywaBQ4y66cth9MmRjqTDAI37RwmI3shJMqs2wqKlOGVyi9FE4n2WHImNJHZE=[/tex],[tex=6.571x2.786]S6spU8Y5CNdWE9joVIOaz/Sh2ZoxVeq+quB+E36c5cxxqeY7LlY3YjTTraH0i+Chh1Qr9//nD+fxFFJ6Gw6vhZ15C78fG17JplL59BW5juk=[/tex],[tex=6.857x2.786]Hx6phGXj0anRWMad2RpU3mZV41a9jc01/TrOu/Zit33g0U1F749xkXD0FVhaCnES9LM53JCmV762dDmv02woPTSjPe8SYJ9g/cKsAutBlXs=[/tex],[tex=6.857x2.786]CU4dfAi2bMVPwddwPKvwTRTbIR36to1PMwPFtEGvBgp5HD/rmzwbh5o/qXSzgL+VImeI7Z/ywfijUxnGQb2tKbxIQDv+bQXKszEc4LCj9Xw=[/tex],则由式①(见题目编号)可求得[tex=17.929x1.357]wBIgy0RBbDleoxr1GonigC1zHO/NOMbBvWI7+V4L4eEzs31ec6v2lCNAgGO1lLdF5A8d6szaqXN4nb27dLDALbo/SomI41jA+xhBlSGtBwUCeUsg8C0qKlU/3l8JPC+CWpNumnK5jMzALWlS4iEKUA==[/tex]其中[tex=11.071x4.786]HJammJSW6EkxRCluDbVEjrVPCjVYPivqzQiAqMbxm5oQJWaDQDj/Mivli/kRd6ozrGq26fBf7pa41vEKjWbm6SistndR2+YW/k01LGQ1dxhUNU54dNW/JsX+SZpilJblWbcegRj0OWskQ4R4O2ZXw9BD3eAszxch5k3QXRvtJ0I=[/tex]令[tex=2.929x1.0]HGm0CGn+wNHWRqHs7VGLrw==[/tex],得基础解系[tex=5.643x1.429]iaYUdMl6xfRvm0DnT0yBQiZJst7dzevWQ6MIEJiC5HY6RsZxBAxYIqqfpH6ewzZj[/tex],[tex=5.643x1.429]wxh2xsksyH0aAqF7nCdKMAyzvuDRyouShue92A6BRUE=[/tex]。再令[tex=22.786x2.786]p8HysR037WLTnFmFecFbWzHyoBdibgKeycQHyyq2/mbXfabwPiWFCgHPH6t0BrIAtMxDXXnAoggfyQkDH+Alb03k13XK2/cfnp4S6fmd+rDG1tJgRRedKQyKLYg9EoZUzzE5OjIkYQXq2vpKvE4BpOliSA8H4jyqU8CqXJHF63w+TErJPE28HKhF5hDQv3oOgXTskBxlSHNiAG6mABbEzIYK2macrufqeIVLbxO5Gzg=[/tex][tex=22.786x2.786]s4iuWT66k3HSAC4lkWWYEB2EA757PVkNS/ZEhH6OYcpE+VVfd5UZ5wQOD1ml4DL8xypDzOXIMwt5MFPLMO6dqWpnAIXBUmMPvxhkJTI4vnmtQke46h1ZWCOfdsV37Uicy0Fpqx6bx7jHgT8kAyUSyTSaIbBNSjLgrdXThrtgbH9o7agiwlsZxnxQR6WH3OeNkQMVIDNxW+9xw/8kDIQ5qrxF55yqWSKCK6lbcwMYYTY=[/tex]则[tex=8.0x1.357]wu5u5qUjt6yuu3pw8Hnq2ACGoJizTMq18pdEX83zFnu8joGkMdMTQgxEwLPRgSFvct+gTavBTtqlc/HwSfMmB6uVroTHs8NPMvjWWC1wTYY=[/tex],所以[tex=6.214x1.357]NovbxKl63Ey/milqTcbe/zEUh6aSlTsyUP/MWm5Py8xsN1/iF7l9lVNjCDQYVjEy[/tex],且[tex=1.143x1.214]S7ZrL5xoKV1AGeN+8Lw+Yg==[/tex],[tex=1.143x1.214]mCgEQynfX3VGXLkFI1qJtg==[/tex]为[tex=3.071x1.357]7sm0+A17+tx/lVOuO5S85PnbYHTz7jS+y0Vf10WlEPI=[/tex]的一组基。方法二.设 [tex=8.5x2.357]jcCMHflCR8OS9TosV6N5vN4XxHvFZ+KBaiD3478X+M3XDwz+ps9dY3xlBsve9Rb/ovNGm7Pi6sCo9ZLd+Hp2toGopdfRqsZlTf0ecq3NK9nRGDlttApJjmVfvYK8tVx1/EXIih4B/XEHnc9Y6X4DgA==[/tex],则[tex=21.429x5.571]rwMhqGKFQ+j3l2qMx/grPgJR6Zbj6nhfnfTg+dhaD9iG3Dm5HX59OTBF41P1Ea48dE7SgeDeqMxAXh+KSdaoFq4/f/lWTOm6HLYmyRu5wAkZYhagrdOR0G4BM/Shf9Gq9CrydpQ8EJexr8d61a0jFceLOxaJMGiygvWXNDu6yXJYl3v8ploYTXv4XAS3tABIcS/VOsmdH6gDpUie3FazvQrj49z2RaxjBJy+8jA75s8OJ82bJ7DFZ8EdYi3AqwTA9ynv3mWYeMGSvShJDvApVe4ld9LD2P5iZUVdmjNwq+Bm+wlD3ew8p9LvjOSBqVvA5g0XKNOi0AFyB3E3Z/j4dhv3khO3nqcMHXHUwkxeobGqZNfRobUAOHlrGumIjh4cqLbePJt2JD+je2aHFmI503lVQmrpwl1rnjtYFIrKBSSp8dyLHzEhuYpf+kD1wKae5l8WRoGSiSctnWvhDhRKAPf50fKhmXAi8R2JGY3EUE3hXgNEKRxZUPJIye5TdqqcE7gHs2KtV6JkZks6rZrdll1wZTufHkc6j3UlTnp0uTs=[/tex][tex=2.0x1.286]VlvZ+ytmPPfnv2FduF0mDA==[/tex]由式③可得[tex=7.357x2.786]GE56u9QCDTqcLxZ66HADylUvB1ce4zXbKRSCscnrn05j+x40GFrvUukmTsNOI9jf7RWYXsOoNUcY12Ibdt+UeCYl7xIbDrHHFWCM8HbnK+4=[/tex][tex=2.0x1.286]XFgxLUY1418XPmk8Y1GfjQ==[/tex]由式④得基础解系[tex=5.643x1.429]nssioPPKweg2LIyiSufp/JZmFpTMsET0Ih4L3YCEXh0=[/tex],[tex=5.643x1.429]wxh2xsksyH0aAqF7nCdKMAyzvuDRyouShue92A6BRUE=[/tex]同理得[tex=6.571x2.786]LOgCFxQlpqNAnOJYPItXF8l7aeJ9m+XD/80wbZ1cnScv/tZdkFk32oyR+mBgJzhhHfHwsVYzRXknQY3O/BHBdC/tGuKRm8pncJArIzScDvo=[/tex],[tex=6.571x2.786]s4iuWT66k3HSAC4lkWWYEMS+tpKgswGLzhLtZXgkz+pEt7dBGFl3of2yoPm7/n2OnliMeePrMtNL5vwEnMiOsh1N5aa9/s5YH7gT6OJiaQY=[/tex][tex=8.0x1.357]pmmcid6S5ZRQAYSz7Wd/Oj6ClNv9ZmtULuDx5AxukESX1alZRRBf0emkCR/x/hoOl0XyYJ7WhTAM/6EnRkmzQQ==[/tex],[tex=6.214x1.357]lBXXZYMMrxJ2+/5vAU9EvYdNaAGvvry1onO+RdsMzEQvqkko4EUoMXnU9gQxj782[/tex],且[tex=1.143x1.214]at+1R0RTShssGF7lbaMCXQ==[/tex],[tex=1.143x1.214]QBWEJOYLeG+T6bk2AOC6Kw==[/tex]为[tex=3.214x1.357]oKvId/Zd+7xyPnE/Yaxw4A==[/tex]的一组基。

    举一反三

    内容

    • 0

      证明下列线性空间是实数域上的无限维线性空间:实数域 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 上的连续函数全体构成的线性空间 [tex=2.286x1.357]w0V/CiXuX1+xa+kdyxqW3Q==[/tex]( 见例 3.22(5)) 

    • 1

      设 [tex=5.357x1.0]7pNelk4HUVBg38zOC/iSU7vMHJrVLgwqvpr1rK1NbFKaEiEule+x7zsTPLTAhCyvaZvwEOnFcKaPMr3tKaDZBA==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 4 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一个基, [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的线性变换 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 在这个基下的矩阵为 [tex=9.5x4.5]r+tiAx6ClSaeP7cZbqpjmfK7O8r/htd1QXcUP+123Y3A6ectjTrAKD+R6YhjQBAKJ/y/MG0HupMmkFv14OfaK+wFCeIkssszMaxkxbDFg7WtoVrOKql6pmFkMzpTZ2jrsFrIUYHHTrFKkFbPUXaV/JTbMMpdsZX0G3vVda9cn48=[/tex]求 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一个基, 使得 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 在这个基下的矩阵为对角矩阵, 并且写出这个对角矩阵.

    • 2

      检验以下集合对于所指的线性运算是否构成实数域上的线性空间:设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=2.429x1.071]w6DRLNGfKUayn4WdAKMCow==[/tex]实数矩阵,[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 的实系数多项式 [tex=2.071x1.357]eaHPq2VmmgTOBGNjh9LC3Q==[/tex]的全体,对于矩阵的加法和数量乘法;

    • 3

      设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上任意一个线性空间 (可以是无限维的), [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]  是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]  上的一个线性变换. 证 明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]  的属于不同特征值的特征向量是线性无关的.

    • 4

      令[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是由数域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上一切形如[tex=5.0x2.786]jcCMHflCR8OS9TosV6N5vCJqTJglpGfpXaEtTjU9Hwwc+yuMmTz9DJiCpCAUqu2AnZyZpZuHDSyRmftXjpFJnQ==[/tex]的二阶方阵作成的集合.问:[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]对矩阵的普通加法与乘法是否作成环或域?