设计一个递归算法,它计算假如[tex=9.643x1.357]DwNaq3MAdsNOFWbOq8xBI37G06fb1sQYLTmWpVFQCuWbzkOOIJdCL4fHluIefFBLlT47KSPcfK25/9CHKQBRXw==[/tex]时,满足[tex=2.357x1.071]QbU+vUJjuGTVI8qNJiB1oA==[/tex]的两个非负整数[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]和[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]的最大公因子
举一反三
- 给出求满足[tex=2.357x1.071]QbU+vUJjuGTVI8qNJiB1oA==[/tex]的两个非负整数[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]和[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]的最大公因子的递归算法。
- 设[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]是整数且不全为0,而[tex=9.857x1.214]hhHzRVDsWGXE+Yltfe39hDUdsl3Yzf9jGRPDg4wYEoJYR6eBGAfms1GUG8a2PN1l[/tex],证明[tex=0.571x1.0]TcM6B5Wrs5vy9dWrxRPSdg==[/tex]是[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]与[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]的一个最大公因数当且仅当[tex=4.214x1.357]jI1oqbiyUHYU1xbNvvBdDK5ib01K7Vb7AmVkL7RKEyk=[/tex]
- 设[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]是不等于零的整数.且满足下列两个条件的正整数[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]叫做[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]与[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]的最小公倍数:(i)[tex=3.571x1.357]2r4ZpNKLF6HpDoP4ji6v2g==[/tex];(ii)如果[tex=1.929x1.071]rFBE4MTOSfVgaTsLfRa5FA==[/tex]且[tex=3.0x1.357]huACl7vUaYZTtkivcspxUA==[/tex],则[tex=2.357x1.357]53n+iIHx1XAyRRtWGAbzKQ==[/tex].证明:[tex=1.357x1.357]TWUgLpDrEXIKICMuiEQPjw==[/tex]任意两个不等于零的整数[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]都有唯一的最小公倍数;[tex=1.214x1.357]vzdGmXlbw83hTiK2SebvEA==[/tex]令[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]是[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]与[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]的最小公倍数而[tex=3.357x1.357]Xxt8bFgvMkQLJViypSrDYg==[/tex],则[tex=4.0x1.357]Qf/TY1YnpQWchPW96yN99w==[/tex]
- 设[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]和[tex=0.571x1.0]TcM6B5Wrs5vy9dWrxRPSdg==[/tex]是基数,表明[tex=2.357x1.071]3eLzYXJKd0KeuMfAOoGQfQ==[/tex]不蕴含着[tex=3.357x1.071]Bw5xeTL/rksJwF4Tg7Qs2A==[/tex]。
- 设[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex]是 PID, [tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]为整环, 并且[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex]是[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]的子环, [tex=5.214x1.357]VFWl1yAokBFlo+nHBbGmoD5rwAzFW4xsLvf5k+w7nKE=[/tex]. 如果[tex=0.571x1.0]TcM6B5Wrs5vy9dWrxRPSdg==[/tex]是[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]和[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]在[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex]中的最大公因子, 证明[tex=0.571x1.0]TcM6B5Wrs5vy9dWrxRPSdg==[/tex]也是[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]和[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]在[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]中的最大公因子.