• 2022-11-02
    设半径为[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]的球面[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]的球心在定球[tex=7.5x1.286]QwY3CbnOdl+ukx2Eamho1MvxSi7qsh9JXIiCot14U+8=[/tex][tex=3.0x1.286]Nl/NBNyCFpk+ZEqEEQBIIA==[/tex]上,问当[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]取何值时,球面[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]在定球内部的面积最大?
  • 设球面[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]的方程为[tex=10.143x1.286]xVFqbwgjijf17GS+FzrYDa1I8FSvLOokms0Jemjhtl+y1ok2dNcxxEoksa8jZhsf[/tex],其中[tex=4.857x1.286]giB12wYatKxZ9hNV/3rWgw==[/tex],则球面[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]在定球内部部分的方程为[tex=10.0x1.286]TX8p2YTx7ujFQf91hD4wk5LOHOlcXWBEnq2uOzmzWUSSEIRSWvQi5YI9sLzq7eWy[/tex],由[tex=9.286x2.5]V9fVXReHUrcmKJSTnoNlS6Ff1/BpV286INVZ6gU3ArNNEt8pkVEVGtl26bWGbRVR9UR/Qu6KSjBW4nSl6eopjIzZJU0OzuhkPoCBs9xBuoA=[/tex],[tex=9.214x2.5]V9fVXReHUrcmKJSTnoNlS2VH85Q2O3lrqDC96Fb5StR3WuN1kfh+faEVl7bmcW8nuz5n/TRViqUcXT+q1EBD9nk6oAQ7qWXEuT0LkZlYYMA=[/tex]得[tex=10.286x2.929]lma8frLrS9pjfUXF3cTqI55F3tK7GB82+65C4TVAUI+ZNqt0l1LFqlB643Yx+h2X9qgaD5XIqVWhVlBiQYVYomVvpPH+nlfAAjUoFUELv/SOSOCnSVtxDJtOqWI0yg9a+03gV+sOXLpEkLjFsZoSSg==[/tex][tex=7.643x2.429]19VR5SdmKm38tBT7rxP8p9wxUp84XS/mFJ9CyR6LvTLZkw2ir0MzGvJokZcrR57R[/tex],从方程组[tex=9.857x3.929]fnpmC2J6JmQBLyo5NmGAz89fzajrsY2GMIIvBoKtXjP1z86jJP702eg5urnKS4dvEaQ/WcNx241281vbXCoCINZ1T2QSLTkvvMcxSuXfTjovw6GUkjZhbWovWCTRi1qBlVKyJo+Q4A4jvB+amyAcTA==[/tex]中消去[tex=0.5x1.286]asctJDWpGaq/ETe64ANZ1Q==[/tex],得两球面的交线在[tex=1.857x1.286]j9TayWzddHzM0PQ/gL6C3Q==[/tex]平面上的投影为[tex=13.214x4.5]fnpmC2J6JmQBLyo5NmGAz89fzajrsY2GMIIvBoKtXjPIG8JARJhkZbS6IoI46DKpG08J0ZHplP1Uyc8hI4iosrWqfV+eauaqTO8jfOhEH3sWmdf2GYeVDUnIDinflB+A+kAhDBQwo05ilk+xDkg0wIH2b/Dc1AWF3fjuveiCh7c=[/tex],因此,球面[tex=0.786x1.0]9VwAJL/RcXaXLq8lMLzr4w==[/tex]在定球内部的面积为[tex=17.643x11.643]qeiYnKXLEhyhuGRg8yLtr0EOyHBOF/XSR98wEXIzEL5N7NYFyhLrbQnxZoavyq5+kAGXvR5QXM88XHOStl+iTlHOam/FothL8ER3xhHvgmMXMjdXe69+s7HfBCSTk2pDyDTAHI9QwPYnK8bnZRDADnBUyskN+OPCezxBpabfJSrbvx5LP7dasQpvGtevrF0waUQfvENUbbghdB7zvzMvH1YpJAyHKTAe1OBAJm2mWN7LZZxtig3N6+FaUM7BevYEB59TN6BZMh7q4Ybk5Qt7YHt+G5EniSEoly04haA1dKet8QBQd7Iav6omlSd97VbbVgNTCq5iTAhlbGTc9KeGviAO4J/VRX8vOy228xJMeaoCHiMnFmQkQ0LVBj2uopxGVSfwJQBxDgYxr6ZArhnOlmier6KG2KyGShDUJs73STTm9wMVHv5nzJBF34ZAR9mJBwuaHjIEsvizPA1/CfDDvw==[/tex]于是[tex=9.214x2.0]S25mjjjsHE9YKrlfrAKLdQSOdBVZNeiCF9vMN8kBKjjWGZG52TOpm9ISZqLgHL8kIGqgAvJ0jUT82/0XHh+h0A==[/tex][tex=7.0x2.357]PiYdS0e0Mmjpizsim6CqUsdlebNNZwTr3kbZ19ZY82nz5WMbSJDAPYTaixvydSSw[/tex],[tex=8.286x2.0]uAfURenNNoBwnZwU3SQfa2snHWIDD736kP2+8zPpJX75zR0TcL2LOF84m4NCH6ViaVGK/PN2iSSou2tMa7gMmw==[/tex],令[tex=4.214x1.286]S25mjjjsHE9YKrlfrAKLdVAHrkDrqaCY5c30zCJ3k9Q=[/tex],得[tex=3.286x2.0]dkBW1NSNWTPV/QJA5PbuOD1EJsLDMTB8/VEq7nndeo8=[/tex],而[tex=8.857x2.357]uAfURenNNoBwnZwU3SQfaxhXOilPbdEuKlQ9QRhKZjtfrLU23O3yuyGTB0R5SSTRvgAbokjCFxi/LrJu09M9mQ==[/tex],故函数[tex=2.214x1.357]8JKb4vrClE01G5A4icz4+w==[/tex]在[tex=3.143x2.357]DGzIZUzGInzX2deJbPJW1WMuss89Us9d2rv6nmjU1RI=[/tex]时取得极大值,且在定义域内仅有此唯一的极值,所以当[tex=3.143x2.357]DGzIZUzGInzX2deJbPJW1WMuss89Us9d2rv6nmjU1RI=[/tex]时,球面[tex=0.786x1.0]9VwAJL/RcXaXLq8lMLzr4w==[/tex]在定球内部的面积最大。
    本题目来自[网课答案]本页地址:https://www.wkda.cn/ask/exymopteaptemyxo.html

    举一反三

    内容

    • 0

      设在非空集合[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]中定义了加法与乘法两种运算且1)[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]对加法为群;2)[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]对乘法为幺半群;3)加法与乘法间有分配律,证明[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]为幺环。

    • 1

      已知星形线[tex=6.143x3.357]fnpmC2J6JmQBLyo5NmGAz3jVcwYZMZw0YQ/CFBy2Wa9zdHPEw+mDDe3w37nZYpizPVMMc+bi1LESRCDg++jwWlPxJauQ9ZLONOeVqyXGqDo=[/tex][tex=3.0x1.286]Nl/NBNyCFpk+ZEqEEQBIIA==[/tex],求:(1)它所围的面积;(2)它的弧长;(3)它绕x轴旋转而成的旋转体的表面积。

    • 2

      设关系  [tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]  和  [tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]  的元组个数分别为 100 和 300 , 关系 [tex=0.714x1.286]atrPPistVyxj7cY8rjePCQ==[/tex] 是  [tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex] 与  [tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]  的笛卡尔积,则 [tex=0.714x1.286]atrPPistVyxj7cY8rjePCQ==[/tex]的元组个数是 A: 400 B: 10000 C: 30000 D: 90000

    • 3

      建立球心在点[tex=5.929x1.286]sE1GtSgrKJcsj8j9jZDxUPY7ICVy247oQhPvWrcXbdIoPb6od4z8geTC7yGSrJyK[/tex],半径为[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]的球面的方程 . 

    • 4

      本题图所示为杨氏干涉装置,其中[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]为单色自然光源,[tex=1.0x1.286]fec03kdiDHJZ/H9HfxE26g==[/tex]和[tex=1.0x1.286]nVg/OboUIedGXkD92K/F+Q==[/tex]为双孔。(1)如果在[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]后放置一偏振片[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],干涉条纹是否发生变化?有何变化?(2)如果在[tex=1.0x1.286]fec03kdiDHJZ/H9HfxE26g==[/tex]、[tex=1.0x1.286]nVg/OboUIedGXkD92K/F+Q==[/tex]之前再各放置一偏振片[tex=1.071x1.286]lVnSopFA1usrKAxl+5g70Q==[/tex]、[tex=1.071x1.286]UBIeDl6zSMqHMCtNS9Ch5g==[/tex],它们的透振方向相互垂直,并都与[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]的透振方向成[tex=1.429x1.286]fx3g+d/pRa6yWJ16UudiCg==[/tex]角,幕[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]上的强度分布如何?(3)在[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]前再放置一偏振片[tex=1.071x1.286]oQrdTTOSojhLxsgElUtwKEXEyvdB8yYReDktAhgLxZo=[/tex],其透振方向与[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]平行,试比较这种情形下观察到的干涉条纹与[tex=1.071x1.286]lVnSopFA1usrKAxl+5g70Q==[/tex]、[tex=1.071x1.286]UBIeDl6zSMqHMCtNS9Ch5g==[/tex]、[tex=1.071x1.286]oQrdTTOSojhLxsgElUtwKEXEyvdB8yYReDktAhgLxZo=[/tex]都不存在时的干涉条纹有何不同?(4)同(3),如果将[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]旋转[tex=1.429x1.286]iHy5/y9gwEar6QVhQIsUNw==[/tex],幕上干涉条纹有何变化?(5)同(3),如果将[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]撤去,幕上是否有干涉条纹?(6)类似(2)的布置,屏幕[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]上的[tex=1.071x1.286]Dz7/vh1s8Z5rzFFYu9edHA==[/tex]和[tex=1.071x1.286]ZsHT0ZttLnN+BV9m0T4ItQ==[/tex]分别是未加[tex=1.071x1.286]lVnSopFA1usrKAxl+5g70Q==[/tex]、[tex=1.071x1.286]UBIeDl6zSMqHMCtNS9Ch5g==[/tex]时0级和1级亮纹所在处,[tex=1.071x1.286]1qJu0vZHNhO2sbJgk2DvJQ==[/tex]、[tex=1.286x1.286]as3pisb9zJurz1C56Q16EMzVAhxLqp/GwQGgVOdXQGM=[/tex]、[tex=1.5x1.286]as3pisb9zJurz1C56Q16ELP+eavG0LCS2bOy8IiTLLs=[/tex]是[tex=2.071x1.286]8Qd7g0rVEt+2fkFXGm8fQKxZG8uU/4E9+N/cP/r8jUM=[/tex]的四等分点,试说明[tex=1.071x1.286]Dz7/vh1s8Z5rzFFYu9edHA==[/tex]、[tex=1.071x1.286]ZsHT0ZttLnN+BV9m0T4ItQ==[/tex]及[tex=1.071x1.286]1qJu0vZHNhO2sbJgk2DvJQ==[/tex]、[tex=1.286x1.286]as3pisb9zJurz1C56Q16EMzVAhxLqp/GwQGgVOdXQGM=[/tex]、[tex=1.5x1.286]as3pisb9zJurz1C56Q16ELP+eavG0LCS2bOy8IiTLLs=[/tex]各点的偏振状态。[img=740x401]17e773ad185c7ab.png[/img]