求证: [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称方阵 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]半正定的充要条件是存在秩为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的 [tex=2.286x1.071]qxUBJkw5pHPFqpR4rHoDwQ==[/tex]实矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 使 [tex=3.643x1.429]SqQpIYQTmuZ0nSSPB4PKdQ==[/tex]其中 [tex=4.429x1.0]akDE3bSvxe0s1vO9enpAsxI87rpykGhy6KeMboCBNcI=[/tex]
举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵且 [tex=3.214x1.357]hX3f8UsjDJaECSBkrJokYg==[/tex], 求证: [tex=2.714x1.214]+yxb2fEUuHYxLwX2MLViFg==[/tex] 的充要条件是存在秩等 于 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的 [tex=2.286x1.071]v8laF85U0CrctV02ZYMlSw==[/tex] 矩阵 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 和秩等于 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的 [tex=2.286x1.071]qxUBJkw5pHPFqpR4rHoDwQ==[/tex] 矩阵 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex], 使 [tex=6.214x1.214]f39+QBV4Orf3M8mA9LvCC62txEzwZ8ffNLoMbXZk4cs=[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是半正定阵的充要条件是存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex], 使 [tex=3.571x1.143]hxFWgRCv5aAQupvKU7mh2beLYIJKHZGJzzikFX5cknU=[/tex] 特别地, [tex=5.643x1.5]D4lHlRC2Cj631bW0hzH2K1oqj6tIuom8fDjIozTyv0w=[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是正定阵的充要条件是存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶非异实矩阵 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex], 使 [tex=3.286x1.143]Ys46PWl0/Kt6EeuPQmIYUVrqckiP2yTAu4+gPWxyAI8=[/tex];
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证:(1) 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可逆, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl/jgx7HDqG8OMKcZZrhVcXy6+JovSSXitpjCbh6SDQEN[/tex](2) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为半正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶半正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl8wUbDZMgCOnJA1lQifZKR+Dh2C+JkyFhRzqn66dyW91[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 若存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 使 [tex=4.143x1.286]YCUl/vNcR5SNlwwslg9Jhb5CY//bqvCw+mSVvBQx12Q=[/tex] 是正定阵, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为非异阵.