举一反三
- 已知点 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的直角坐标分别为 [tex=3.214x1.357]tMigi1BWEgHDf8y/YZa+8Q==[/tex] 和 [tex=3.214x1.357]FDf4OmezGeZY1QznkKOrDg==[/tex], 求由曲线段[tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex] 绕[tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex] 轴旋转一周得到的旋转曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 的方程. 用定积分求由曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]、平面 [tex=2.357x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex] 和平面 [tex=2.357x1.0]DiJR/9DW631uuahYoMJyLg==[/tex] 所围成的体积.
- 已知点 [tex=3.929x1.357]YqEg2W01WEG9dVVzpwfzGQ==[/tex] 与 [tex=3.643x1.357]XgZHK4djp4B4T5JvOSP32w==[/tex] 的连线 [tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex] 绕 [tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex] 轴旋转所得曲面为 [tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex], 求 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 与二平面 [tex=3.786x1.214]oxF28Wdoj7wT+iff3GUttA==[/tex] 所围几何体体积.[img=184x260]177e2f17a5e9e23.png[/img]
- 求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?
- 求微分方程[tex=8.357x1.357]m5JIhzHdcS9bmKEwWvshLHUX4xMqwQRk2Suh2UXtBbw=[/tex]的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2及x轴所围成平面图形绕x轴旋转一周所得旋转体体积最小.
- 已知空间中的点 [tex=7.5x1.357]xEQdh8IEMKiDD36APM7zTJg/iV7vkFPHQHNlOZ2woPw=[/tex],线段 [tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex] 绕 [tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex] 轴的旋转面为 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex],求 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 与两平面 [tex=4.0x1.214]oxF28Wdoj7wT+iff3GUttA==[/tex] 所围的立体的体积 [tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex].
内容
- 0
求曲面积分[tex=29.0x2.643]bvTt2KE1WatSuQ4zFkQwoiWHN6dIHhFc9sZ5Hj4OR0pAZKdhxH+BWQ4txiW9wJnq1xiGTqySeP2xQ7p3cmJKGPp/HbXxPCG1auozBTdjinfhTQfo6Y61eCBj3fiVEkKX[/tex]其中 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是由扮物面[tex=3.929x1.429]eXG42LBlVmCe9OBZMR2NwQ==[/tex] 介于平面 [tex=1.786x1.0]DiJR/9DW631uuahYoMJyLg==[/tex] 与 [tex=1.786x1.0]Pg1maLyEp4cIH+1hfXTXdA==[/tex] 之间的部分,法线方向向 下,[tex=3.714x1.357]jXlbxPLLnQnx5iOoWi65fg==[/tex] 为连续函数.
- 1
设一平面垂直于平面 [tex=1.786x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex], 并通过从点[tex=4.0x1.357]nVJJEKVA4Modx70PXK0OUg==[/tex] 到直线[tex=6.357x2.786]7EJHVCtO2IWq3KpdB+jQsu2TzFWJjsntDAyagYRwefkWw9jfgt9jfZ6m21aVjFCBB74g/x/pgO01mkmjdtcLYA==[/tex] 的垂线,求此平面的方程
- 2
画出曲面所围立体的图形 :旋转抛物面 [tex=4.214x1.429]FN7rTA2vAz0RXI5/A0fE8zBBmz30jA5iEYqEmRfy3WU=[/tex]柱面 [tex=2.857x1.429]p7OFYSj0xO0ufHtO0ACOCg==[/tex], 平面 [tex=1.786x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex] 及[tex=2.143x1.0]pDelnoEz3vIL2Zpz5Q87NA==[/tex]
- 3
画出下列各曲面所围立体的图形:旋转抛物面[tex=3.929x1.429]MPyw9Tjgg86vA8W4uVQm4w==[/tex],柱面[tex=2.286x1.429]CH2IJ2CPtnhuWsAGyv8Crg==[/tex],平面[tex=1.786x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex]及[tex=1.857x1.0]bDciPe+XpAtFXVWzOC1eLA==[/tex].
- 4
求由曲线 [tex=4.714x2.786]7EJHVCtO2IWq3KpdB+jQsvMilYoyf6TFxlIO8MoH9z7S4e+DdvzkEw0ttNTzKJDh7aJeS4vsOHBawG65Nvu4Mw==[/tex] 绕 [tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex] 轴旋转一周而成的曲面与平面 [tex=1.786x1.0]zfZ2awHGcK6S/WIM2r1wew==[/tex]所围立体在[tex=1.857x1.214]8v+QaGH4dkCVbzRhgAvkuw==[/tex]面上的投影区域[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]