设A, B为两个n阶矩阵,如果存在n阶非奇异矩阵C ,使得(__). 则称矩阵A合同于矩阵B,记为 (__).合同和等价的关系是:(__)是特殊的(__).
举一反三
- 【单选题】设 A , B 为 n 阶矩阵,若(),则 A 与 B 合同 . A. 存在 n 阶可逆矩阵 P , Q ,使得 PAQ = B B. 存在 n 阶可逆矩阵 P ,使得 C. 存在 n 阶正交矩阵 P ,使得 . D. 存在 n 阶方阵 C , T ,使得 CAT = B.
- 设 n 阶矩阵 A 非奇异 ( n ³ 2), A * 是 A 的伴随矩阵 , 则
- 题目18. 两个\(n\)阶矩阵\(A\)与\(B\)合同指的是: A: 存在\(n\)阶可逆矩阵\(P\)与\(Q\),使得\(PAQ=B\) B: 存在\(n\)阶可逆矩阵\(P\),使得\(P^{-1}AP=B\) C: 存在\(n\)阶可逆矩阵\(P\),使得\(P^TAP=B\) D: 存在\(n\)阶矩阵\(P\),使得\(P^TAP=B\)
- 设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则()。 A: (A*)*=|A|n-1A B: (A*)*=|A|n+1A C: (A*)*=|A|n-2A D: (A*)*=|A|n+2A
- 设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则(A*)*等于 A: |A|n-1A. B: |A|n+1A. C: |A|n-2A. D: |A|n+2A.