证明: 环 [tex=3.071x1.357]FvVdeF29yC+Nf//tT6N+GXawKHg4GD7gxmD38JWxakM=[/tex] 没有非平凡的理想.
举一反三
- 证明:群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]没有非平凡子群的充分必要条件是[tex=3.071x1.357]xHviwcuNKPAAjtgsU6/TxQ==[/tex]或是素数阶循环群.
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]为[tex=3.071x1.357]FvVdeF29yC+Nf//tT6N+GXawKHg4GD7gxmD38JWxakM=[/tex]上的加法群, [tex=1.929x1.143]Z8A/nlCICwjyBsX7aR53kQ==[/tex],判断下列子集是否构成子群. [br][/br]全体上(下)三角矩阵.
- 判断下列集合对所给的二元运算是否封闭. [br][/br]全体[tex=2.429x1.071]fYRl1cpBZV0k8ULAvI7FIg==[/tex] 实矩阵集合[tex=3.071x1.357]FvVdeF29yC+Nf//tT6N+GXawKHg4GD7gxmD38JWxakM=[/tex]和矩阵加法及乘法运算,其中[tex=2.714x1.143]VIAETkOIJHidy5tnBH3PrBhpI7VspdiEbfRjo6JvIA0=[/tex]
- 证明: 域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 中没有非平凡的零因子, 从而域一定是整环.
- 证明:群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]仅有平凡子群的充分必要条件是[tex=3.071x1.357]lhn0XHWkDQjpgStNKz1WNg==[/tex] 或 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是素数阶循环群.