设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上的关系[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是等价关系,试证:[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的逆关系也是等价关系.
举一反三
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]为集合[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]中的对称的.传递的关系,证明[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]为等价关系当且仅当[tex=6.071x1.0]WdTKPrhZ4HhJlHV7uS5Brg==[/tex].
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系,将[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的元素按[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的等价类顺序排列,请指出此等价关系 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的关系矩阵 [tex=1.571x1.214]vGYzHX53AOjsp+qXDwbdhg==[/tex] 有何特征?
- 设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上的关系[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]满足对称性和传递性,问[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是否一定满足自反性,并说明理由.
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的偏序关系,[tex=1.714x1.214]Epp5spNUN0kTQ6Z2G/SIAA==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的逆关系,则[tex=3.571x1.214]Gw6zJ45HspL4TFQh9dUraA==[/tex]是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的( )。 A: 偏序关系 B: 等价关系 C: 相容关系 D: 以上结论都不成立
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系,证明 [tex=0.786x1.857]HvRfdD49AA11ZLsdQA7Xxg==[/tex]也是集合 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价系。