举一反三
- 设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上的关系[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是等价关系,试证:[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的逆关系也是等价关系.
- 设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上的关系[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]满足对称性和传递性,问[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是否一定满足自反性,并说明理由.
- 设[tex=2.714x1.214]flgOqq4uZN1LSPYtjvuYcQ==[/tex]为集合[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]中的两个等价关系,证明[tex=2.786x1.214]h+sgJJ+hO7O6atHnTmbPI3Q7/1cgdmNXsz+WDhMAsds=[/tex]仍为等价关系当且仅当[tex=6.214x1.214]h+sgJJ+hO7O6atHnTmbPI6V/7idh3Jn/4D3EmEtMSbcUrt0K4PCDwci/XI6tY9CZ[/tex]。
- 设群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 在集合 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 上的作用是传递的. 证明: 如果 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的正规子群,则[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 在 [tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex] 作用下的每个轨道有同样多的元素.
- 证明群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]在[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]作用双重可递当且仅当[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]在[tex=1.857x1.286]2Yg19n27d/1xraG1SXNI7g==[/tex]的子集[tex=8.0x1.357]sWoJN3/MsIwmZq9YRzQIL18XoCi0RI5eyuXUGAJVitsK5WJlzL6b7OClvRcm60m0HzLL/vc+u564Crs33A8jtbGkpzrXVaURmiC+jlZICwI=[/tex]上作用可递,又[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]在[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上作用可逆。
内容
- 0
设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系,将[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的元素按[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的等价类顺序排列,请指出此等价关系 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的关系矩阵 [tex=1.571x1.214]vGYzHX53AOjsp+qXDwbdhg==[/tex] 有何特征?
- 1
设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为距离空间, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 中子集,令 [tex=10.643x1.357]5cM/LvJqoCikO7A5c+WCIGNRUqezDJxu3zpxuE11UPKaIvCUSRrZmDCbItUQwXHvm/mb7WPRr4/CaMIdGTZddg==[/tex], 证明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上连续函数.
- 2
设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的自反和传递的关系,证明[tex=4.143x1.214]wI8xtIa6pF8inYWYe3KeRifrKOkzkU+85PIg1rCbYqM=[/tex] 是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系.
- 3
设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系,证明 [tex=0.786x1.857]HvRfdD49AA11ZLsdQA7Xxg==[/tex]也是集合 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价系。
- 4
设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]为幺环,[tex=2.714x1.214]QZlcT9hsc9pVwSSKjX8aAQ==[/tex],证明[tex=2.286x1.143]CSCn1Ot9MRXShG2JpXwAmw==[/tex]可逆当且仅当[tex=2.286x1.143]XpfIaW9zz4WduqYz9C24sw==[/tex]可逆。