设总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从二项分布[tex=3.286x1.357]/pjksCQcN3e4aAYfJKGgjw==[/tex]其中[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]已知而[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]未知,试求[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]的矩估计和最大似然估计.
举一反三
- 设总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从几何分布[tex=22.429x1.571]6AwFxb1cedz1/zoBxnNTSB5Sf/UatOnwTmWSIaIYSkR5vKpI7itikycDk6tC0PLdlXuhCDU8EAMM/eK3vpylbubTUJexLsiWYy5MMD1WuAWTT7BgoHKKsze7aePO2fVb[/tex]为总体[tex=0.857x1.143]7n7oFVxukNBwo3UKa1adww==[/tex]的样本,试求参数[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]的矩估计和极大似然估计.
- 设 [tex=7.286x1.357]QvdrmMEkEkXBcM7p9FuvTbsy21jIXoxVmxejgq9Oet6d2gm5oU5lRrP4XvCfng1c[/tex] 是取自总体 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的一个样本,总体 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从几何分布,其分布律为 [tex=17.857x1.286]JKAm9afeOS+JY1Ct3SQhygQZ7XK+nQUvWc5KjhNvOVd9ymuu1lG9zOLcr4GgeV+a[/tex],其中 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 未知,[tex=4.5x1.214]xfn/0lVliMO+HsrMEoBSOw==[/tex] 试求 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 的矩估计量。
- 设总体 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从几何分布[tex=14.714x1.5]zP9uej6rUHf7InAcwueNQZtbqALjnwA97cKwdbqGYZWRT+FWxJibLyvrFNgxa2L4[/tex]其中, [tex=4.214x1.214]hQVnd8H4l0GFpG3H2Wtutw==[/tex]是未知参数,从中获得样本 [tex=5.786x1.0]bKUC97GbQKY2zeG3LTTxIZG4/9u10MlWmsoBvg3iypI=[/tex], 求 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 与[tex=2.357x1.357]y0JP40XwxAEl4j7GgRfsFw==[/tex] 的最大似然估计。
- 设 [tex=6.071x1.214]6m6IpLK9nxKlloS9uQjB0qJni044ihmKs30/YJo0lk0=[/tex] 是取自总体 X 的一个样本,总体 [tex=0.786x1.0]yFLhNWXdy+71qunyuRVv1A==[/tex] 服从参数为 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 的几何分布,即 [tex=16.071x1.5]bS8UF8KyjmFhh6BxHmk2Dumiedt4CxzG4eeid/WKsNWYurbp50LLgNtDKV7NAxhu[/tex] 其中 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 未知, [tex=4.5x1.214]xfn/0lVliMO+HsrMEoBSOw==[/tex] 求 [tex=0.571x1.0]+NxxLnTh2HAHOCSSr6dlEg==[/tex] 的最大似然估计。
- 设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从二项分布[tex=3.929x1.357]GFTCQHXG2UvObWKTlx+wEQ==[/tex]的先验分布为区间[tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex]的均匀分布,[tex=6.5x1.214]6m6IpLK9nxKlloS9uQjB0lPIk7JLiKfngapuQvIJ8/k=[/tex]为来自总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的样本,试在平方损失函数下,试求[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]的贝叶斯估计.