举一反三
- 袋中有 5 个乒乓球,编号为 1,2,3,4,5 . 从中无放回地任取 3 个,以 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 表示取出的 3 个球的最大编号.(1) 求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率分布;(2) 求 [tex=2.714x1.143]1jgYEpq9xJSuDFucJpxIkQ==[/tex] 的概率及 [tex=4.5x1.143]0sPOiEo7FCxjyyAzZspt0WxMlHl2LCSr+Lsbac/2g3M=[/tex] 的概率;(3) 求 [tex=1.714x1.286]p+zOLBbKURbVjWbmuQcavg==[/tex] 及 [tex=1.714x1.0]X5FdyNclpf2RVybCBYcR8g==[/tex].
- 设袋内有[tex=0.571x0.786]7G1MINzwputr5mgALyjQfA==[/tex]([tex=2.429x1.143]JfRk0TIv5kZsg8a9WQ7xig==[/tex])个白球, [tex=0.429x1.0]dX3JVuFw9r8t2KlWf+/Z+A==[/tex]个黑球,在袋中接连取 3 次,每次取 1 个球,取后不放回,求取出的 3 个球都是白球的概率.
- 口袋中有 7 个白球、3 个黑球.(1) 每次从中任取一个不放回,求首次取出白球的取球次数[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率分布列:(2)如果取出的是黑球则不放回,而另外放入一个白球,此时 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率分布列如何.
- 盒中有 5 个球,其中有 3 个白球,2 个黑球,从中任取 2 个球,求:白球数 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的期望和方差.
- 袋中有 [tex=0.5x1.0]+ElP8Glp1jNyDFWBiVUf/g==[/tex] 个球,其中红球 [tex=0.5x1.0]swhA5SpCD6lPteGlwRbm9g==[/tex] 个,白球 [tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex] 个,从袋中取球两次,每次随机地取一个球,取 后不放回.求两次取得一红球一白球的概率.
内容
- 0
袋内有[tex=0.857x1.286]VtHyCG+ZQg7fAIyRU+W9ow==[/tex]个白球,[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]个黑球,从袋中不放回地每次任取1球,连取3次,试求取到球的颜色依次为白、黑、白的概率.
- 1
一袋中有编号[tex=3.643x1.214]JH/h4v15Kf5Z52evRQrzWA==[/tex]的 5 个乒乓球,从其中任取 3 个,以[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]表示取出的 3 个球中的最大编号,求[tex=2.0x1.357]dmcSYePxfPnB5deLY6SCVg==[/tex]和[tex=2.071x1.357]nTItxYThv8TCqU3TYYIseA==[/tex].
- 2
袋中有 10 个球,其中有 4 个白球、6个红球. 从中任取 3 个,求这 3 个球中至少 有 1 个是白球的概率.
- 3
一袋中装有 5 个球,编号为 1,2,3,4,5. 从袋中同时取 3 个球,以[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]表示取出的 3 个球中的最大号码,写出随机变景[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率分布.解题提示[tex=3.143x1.0]wHphqxAcLRmCsKBjU1POUA==[/tex]表示抽到的球编号是[tex=4.786x1.214]mCgB8kLhEAooMxIq54WsLw==[/tex]表示抽到的 3 个球中有一个编号为 4, 另从编号[tex=2.429x1.214]WyaiTkZ28kUrW43mzq38BA==[/tex]中选两个; [tex=2.143x1.0]93WBLJq/waLkng14nm0rAw==[/tex] 表示cho到的 3 个球中有一个编号为 5, 另从编号[tex=3.357x1.214]A7QL48J+FpJVkc2lPUJ42A==[/tex]中选两个.
- 4
袋中有1 个红球、2 个黑球与 3 个白球,现有放回地从袋中取两次,每次取一个球, 以 [tex=3.0x1.214]zlF4+c8ixdgeqVPNk5Najw==[/tex] 分别表示两次取球所得的红球、黑球与白球的个数. 求(1) 二维随机变量[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合分布律; (2) [tex=6.357x1.357]VlpfF2WFZj5Db3FppeuviN1PXaKH508LtJudByw7Txw=[/tex]