A: (x+1 )2 +(y-4)2 =8
B: (x-1 )2 +(y-4)2 =4
C: (x-1 )2 +(y-2)2 =4
D: (x+1 )2 +(y-4)2 =16
举一反三
- 【单选题】f(x,y)=x y 在(1,4)上的泰勒公式为()。 A. 1+4(x-1)+6(x-1) 2 +(x-1)(y-4) B. 1+2(x-1)+2(x-1) 2 +(x-1)(y-4) C. 1+4(x-1)+6(x-1) 2 +2(x-1)(y-4) D. 1+4(x-1)+6(x-1) 2 +4(x-1)(y-4)
- 方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$
- X=[0,1],Y=[1/4,1/2], 构造一个X到Y的双射函数为( ) A: f(x)= (x+1)/4 B: f(x)= (x-1)/4 C: f(x)= (x+1)/2 D: f(x)= (x-1)/2
- 设区域D={(x,y)|-1≤x≤1,-2≤y≤2),() A: 0 B: 2 C: 4 D: 8
- y=arcsin(4x+1)的反函数为 A: y=(sinx-1)/4, x∈R B: y=sin[(x-1)/4], x∈R C: y=sin[(x-1)/4], x∈[-π/2,π/2] D: y=(sinx-1)/4, x∈[-π/2,π/2]
内容
- 0
已知齐次方程$(x-1){{y}^{''}}-x{{y}^{'}}+y=0$的通解为$Y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}$,则方程$(x-1){{y}^{''}}-x{{y}^{'}}+y={{(x-1)}^{2}}$的通解是( ) A: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{2}}+1)$ B: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{3}}+1)$ C: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}$ D: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}+1$
- 1
以下方程在空间中不是柱面的是( ). A: \( 2x + y = 1 \) B: \( 2{x^2} = y \) C: \( {x^2} + {y^2} = 1 \) D: \( {x^2} + {y^2} + {z^2} = 4 \)
- 2
设A=,且A的特征值为1,2,3,则有() A: x=2,y=4,z=8 B: x=-1,y=4,z∈R C: x=-2,y=2,z∈R D: x=-1,y=4,z=3
- 3
【单选题】对任意实数x 1 , y 1 , x 2 , y 2 , x 1 < x 2 , y 1 < y 2 , 分布函数P{x 1 <X≤x 2 , y 1 <Y≤y 2 }=? A. F(x 2 , y 2 )+ F(x 1 , y 1 )+ F(x 1 , y 2 )+ F(x 2 , y 1 ) B. F(x 2 , y 2 )- F(x 1 , y 1 )+ F(x 1 , y 2 )- F(x 2 , y 1 ) C. F(x 2 , y 2 )+ F(x 1 , y 1 )- F(x 1 , y 2 )- F(x 2 , y 1 ) D. F(x 2 , y 2 )- F(x 1 , y 1 )- F(x 1 , y 2 )+ F(x 2 , y 1 )
- 4
问题2:已知a=4,b=2,且焦点在x轴上,则双曲线的标准方程为( ) A: x²/4-y²/2=1 B: y²/4-x²/2=1 C: x²/16-y²/4=1 D: y²/16-x²/4=1