以A(1,2),B(1,6)为直径两端点的圆的方程是( )
A: (x+1 )2 +(y-4)2 =8
B: (x-1 )2 +(y-4)2 =4
C: (x-1 )2 +(y-2)2 =4
D: (x+1 )2 +(y-4)2 =16
A: (x+1 )2 +(y-4)2 =8
B: (x-1 )2 +(y-4)2 =4
C: (x-1 )2 +(y-2)2 =4
D: (x+1 )2 +(y-4)2 =16
举一反三
- 【单选题】f(x,y)=x y 在(1,4)上的泰勒公式为()。 A. 1+4(x-1)+6(x-1) 2 +(x-1)(y-4) B. 1+2(x-1)+2(x-1) 2 +(x-1)(y-4) C. 1+4(x-1)+6(x-1) 2 +2(x-1)(y-4) D. 1+4(x-1)+6(x-1) 2 +4(x-1)(y-4)
- 方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$
- X=[0,1],Y=[1/4,1/2], 构造一个X到Y的双射函数为( ) A: f(x)= (x+1)/4 B: f(x)= (x-1)/4 C: f(x)= (x+1)/2 D: f(x)= (x-1)/2
- 设区域D={(x,y)|-1≤x≤1,-2≤y≤2),() A: 0 B: 2 C: 4 D: 8
- y=arcsin(4x+1)的反函数为 A: y=(sinx-1)/4, x∈R B: y=sin[(x-1)/4], x∈R C: y=sin[(x-1)/4], x∈[-π/2,π/2] D: y=(sinx-1)/4, x∈[-π/2,π/2]