求集合的导集和闭包.设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是可数补空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]中的一个不可数子集. 求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的导集和闭包.
举一反三
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是可数补空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]中的一个不可数子集,求该集合的内部和边界。
- 证明 : 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是不可数无穷集 [tex=1.214x1.214]e54DmX/HRhIpumafLr1IrQ==[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的可数子集 ,则 [tex=5.357x1.357]fBwYrMgP3KtmeDCDysqtrfUK5vSEdK5WXNTmz0EZXis=[/tex]
- 设[tex=1.571x1.0]TYvJVTKRr6FnfPb2CtQh4Q==[/tex]为拓扑空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]中连通的两点,证明:对于任一 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的既开又闭的子集[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex],或者[tex=1.571x1.0]TYvJVTKRr6FnfPb2CtQh4Q==[/tex]都属于[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex],或者[tex=1.571x1.0]TYvJVTKRr6FnfPb2CtQh4Q==[/tex]都不属于[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]。
- 设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为距离空间, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 中子集,令 [tex=10.643x1.357]5cM/LvJqoCikO7A5c+WCIGNRUqezDJxu3zpxuE11UPKaIvCUSRrZmDCbItUQwXHvm/mb7WPRr4/CaMIdGTZddg==[/tex], 证明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上连续函数.
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是可数补空间[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]中的一个不可数子集,求[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的导集和闭包。