举一反三
- 求集合的导集和闭包.设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是可数补空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]中的一个不可数子集. 求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的导集和闭包.
- 设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为距离空间, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 中子集,令 [tex=10.643x1.357]5cM/LvJqoCikO7A5c+WCIGNRUqezDJxu3zpxuE11UPKaIvCUSRrZmDCbItUQwXHvm/mb7WPRr4/CaMIdGTZddg==[/tex], 证明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上连续函数.
- 设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.786x1.0]9Zhj9WJRAwEw/9RNycpEcw==[/tex]都是可数紧致空间。证明:积空间[tex=2.857x1.143]OBJvJRkGmR50oaHqcerUhA==[/tex]也是一个可数紧致空间。
- 设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为可分 [tex=3.214x1.0]BJ0NiZYuvBIGjRY73gw/8w==[/tex] 空间, 证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 中任何规范正交系至多可数集.
- 设[tex=1.571x1.0]TYvJVTKRr6FnfPb2CtQh4Q==[/tex]为拓扑空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]中连通的两点,证明:对于任一 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的既开又闭的子集[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex],或者[tex=1.571x1.0]TYvJVTKRr6FnfPb2CtQh4Q==[/tex]都属于[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex],或者[tex=1.571x1.0]TYvJVTKRr6FnfPb2CtQh4Q==[/tex]都不属于[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]。
内容
- 0
若[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]为无限的可数集。证明[tex=1.143x1.214]89au4ZTfJlSDhE0s+sqU/A==[/tex]为不可数集。但[tex=1.143x1.214]89au4ZTfJlSDhE0s+sqU/A==[/tex]中所有有限子集构成的子集族为可数集。
- 1
证明 : 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是不可数无穷集 [tex=1.214x1.214]e54DmX/HRhIpumafLr1IrQ==[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的可数子集 ,则 [tex=5.357x1.357]fBwYrMgP3KtmeDCDysqtrfUK5vSEdK5WXNTmz0EZXis=[/tex]
- 2
设[tex=2.286x1.357]jro22R1VbAobj1HjELMO/w==[/tex]为非空集合[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的幂集 (即[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的所有子集构成的集合 ),试求[tex=2.286x1.357]jro22R1VbAobj1HjELMO/w==[/tex]的阶。
- 3
设群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 在集合 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 上的作用是传递的. 证明: 如果 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的正规子群,则[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 在 [tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex] 作用下的每个轨道有同样多的元素.
- 4
证明拓扑空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]为紧致空间( Lindelöf空间)当且仅当[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的每一开覆盖[tex=1.143x1.0]ct1heifmhlRlaKf9IxeRz7R6yuvApP6hxhsdYRIkYc4=[/tex]都有一个有限(可数)开覆盖[tex=1.214x1.286]sPM8RtXRTk7w+rKWJRetiEnagVT+Guy1ESzSxGoY8B4=[/tex]是[tex=1.143x1.0]ct1heifmhlRlaKf9IxeRz7R6yuvApP6hxhsdYRIkYc4=[/tex]的加细。