任何一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶对称的可逆实矩阵必定与[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶单位矩阵( ),且说明理由.
未知类型:{'options': ['合同', '相似', '等价', '以上都不对'], 'type': 102}
未知类型:{'options': ['合同', '相似', '等价', '以上都不对'], 'type': 102}
举一反三
- 任何实对称可逆矩阵必与[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶单位矩阵。 未知类型:{'options': ['合同,且相似', '合同,但不相似', '不合同,但相似', '既不合同,也不相似'], 'type': 102}
- 如果 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正交矩阵,则 [tex=3.286x1.214]HM3JdBP5WP33uDCJD4OfucrkJzDkMfWdb5oNTiH51vQ=[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵。
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶正定矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵,证明: 存在[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使得[tex=9.143x1.429]XRMmUOtjtKMyseaeIn9jPM1TnNKlMhqAAioUZ3jWn/FX+SyCCFosC01uB/CWa/Kl[/tex], 其中[tex=0.714x1.0]AiT6fhT2pvop+UvpD2oClg==[/tex]为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶对角矩阵。
- 下列方阵的集合按照矩阵的加法和数乘运算构成实数域上的线性空间的是( )。 未知类型:{'options': ['实数域上的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵全体', '实数域上秩为[tex=1.929x1.143]qMmLG3OT6I+UYFeehawKuA==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵全体', '实数域上的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵全体', '实数域上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶正定矩阵全体'], 'type': 102}
- 证明:[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为数量矩阵的充分必要条件为[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]与任何[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵可交换。