设[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的伴随矩阵为[tex=1.143x1.071]nnt6woQbTr+wrutPzAntHg==[/tex],证明:[tex=5.571x1.5]ddtNYyKpszqy7W1RYYQRuKt+NsIFgVZNGgr/AmuLlUNxwheQIAtjqL79q2LRds/RnbFIr4707h5o6lC1R2cGYw==[/tex]。
举一反三
- 设[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶方阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的伴随矩阵为[tex=1.143x1.071]ay6FZhXvT2wM0bXjMxTOIw==[/tex],证明:[tex=4.786x1.5]BIh93n4rr/VbrKyEAPPe8tuiAVB4bN5bDQA2o6maWE8BHxKq8DCneRRsJJ7Py0WB[/tex]
- 设 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 为 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 阶实矩阵, 满足 [tex=3.643x1.214]u9ZFFjrmdLitRdLiKCtqhjog7ZeYbiv+qENyuyHI7/w=[/tex], 求证: [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 是对称矩阵.
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶对称矩阵,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶正交矩阵,证明[tex=3.286x1.214]gOs/eXCB4zyspRW4NZ7Kog==[/tex]也是对称矩阵。
- 证明:对任意[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],都有[tex=5.571x1.214]pJfFj2aCqUYDnZbV5Jb2/w==[/tex].
- 设4阶方阵A的秩R(A)=2,求其伴随矩阵[tex=1.143x1.071]nnt6woQbTr+wrutPzAntHg==[/tex]的秩,