设4阶方阵A的秩R(A)=2,求其伴随矩阵[tex=1.143x1.071]nnt6woQbTr+wrutPzAntHg==[/tex]的秩,
举一反三
- 设 4 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的秩是 2,则其伴随矩阵 [tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex] 的秩是[input=type:blank,size:6][/input]
- 设4阶矩阵A的秩是2,则其伴随矩阵[tex=1.286x1.071]317mMb/UfJBjZHDU7raSng0LJvrihprruusK4SVz/+w=[/tex]的秩是[input=type:blank,size:2][/input]
- 设[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的伴随矩阵为[tex=1.143x1.071]nnt6woQbTr+wrutPzAntHg==[/tex],证明:[tex=5.571x1.5]ddtNYyKpszqy7W1RYYQRuKt+NsIFgVZNGgr/AmuLlUNxwheQIAtjqL79q2LRds/RnbFIr4707h5o6lC1R2cGYw==[/tex]。
- 设[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶方阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的伴随矩阵为[tex=1.143x1.071]ay6FZhXvT2wM0bXjMxTOIw==[/tex],证明:[tex=4.786x1.5]BIh93n4rr/VbrKyEAPPe8tuiAVB4bN5bDQA2o6maWE8BHxKq8DCneRRsJJ7Py0WB[/tex]
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵为[tex=1.143x1.071]F0wJ6Hm8K7uRqU9zt3sS4A==[/tex],[tex=5.714x1.5]7+UslwtIbOlbpBz5l2fvMS8pAL2LPmbb1oXRYXwsx+g=[/tex] .