方程xdy-ydx=0是.
举一反三
- 方程xdy-ydx=0是.
- 如果简单正向闭曲线L所围成区域的面积为S,那么$S = (\quad ).$ A: $\dfrac{1}{2}\oint_L {xdx - ydy} $ B: $\dfrac{1}{2}\oint_L {ydy - xdx} $ C: $\dfrac{1}{2}\oint_L {ydx - xdy} $ D: $\dfrac{1}{2}\oint_L {xdy - ydx} $
- 计算\(\int_{\;L} {ydx + xdy} \),其中 \(L\)为圆周 \(x = R\cos t\), \(y = R\sin t\)上对应 \(t = 0\)到 \(t = {\pi \over 2}\)的一段弧。 A: -1 B: 1 C: 0 D: 2
- 下列方程中( )是微分方程。 A: \( x{y^3} + 2{y^2} + {x^2}y = 0 \) B: \( {y^2} + xy - y = 0 \) C: \( x + {y^2} = 0 \) D: \( dy + ydx = 0 \)
- 方程xdy/dx=yln(y/x)的通解为____。