举一反三
- 应用有限覆盖定理证明闭区间连续函数的一致连续性。若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在闭区间 [tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex] 连续,则函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在闭区间[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]一致连续。
- 证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]连续,在[tex=2.643x1.286]PGm4xHJaiwTHdGYen/RN9Q==[/tex]可导,且[tex=4.857x1.286]Cd8Bz8d2x3SWtbfKeVRrNA==[/tex], 则在[tex=2.643x1.286]PGm4xHJaiwTHdGYen/RN9Q==[/tex]内至少存在一点 [tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex], 使[tex=3.857x1.286]Vj1na0+3H8N9prT6IvYgMtQ7LV3O1Gqr3J/U+4xoPe0=[/tex] 。
- 应用致密性定理证明闭区间连续函数的最值性。 若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在闭区间[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]连续,则函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex] 取到最小值[tex=0.857x1.286]VtHyCG+ZQg7fAIyRU+W9ow==[/tex]与最大值[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]。
- 证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在闭区间[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex] 除 一 个(或有限个) 第一类不连续点外连续,则 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在 [tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]有界。
- 证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.643x1.286]PGm4xHJaiwTHdGYen/RN9Q==[/tex]连续、单调、有界,则函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.643x1.286]PGm4xHJaiwTHdGYen/RN9Q==[/tex]一致连续。
内容
- 0
证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]可积,[tex=4.714x1.286]Z8aG89xW2CqlsynXFeJHokpsWeKF/J7TY8AfbMD4wWw=[/tex]函数[tex=8.0x2.286]EMf8WcZFyeEJ0WxhFUiQqRhsPFPiDVyC78SdxdvnJFIgKuCsZpdbpqgwMzQgMO3V[/tex]在[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]上连续。
- 1
证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]连续,且[tex=6.714x2.5]8QU3aWoJhSGnV7gONGqJzYsKbxS+lPuYoFwuI9XhYxAiEUcIxK0tGWtktnw0xLsS[/tex], 则 [tex=3.714x1.286]bdk1O+10iPWAR25LzAABM4M0oPDrf7rHpG+DMmWfuvM=[/tex] 。
- 2
应用一致连续定义证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在 [tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]与[tex=2.286x1.286]VF4kZrJI2Vr32V8e+QjbaQ==[/tex]一致连续,则函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]一致连续。
- 3
证明: 函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在开区间[tex=2.643x1.286]PGm4xHJaiwTHdGYen/RN9Q==[/tex] 一致连续 [tex=1.0x1.286]rOrw2E3Z1BdSSAw41TowZ4iHlO4qaDBsGJ7nVzEmCWM=[/tex]函数 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在开区间[tex=2.643x1.286]PGm4xHJaiwTHdGYen/RN9Q==[/tex]连续,且[tex=3.5x1.286]jf4KYTqBi/2JKJP0u55qBg==[/tex]与 [tex=3.429x1.286]PdwADi/W7zeYvYZrdNxghQ==[/tex] 都存在(提示: 证明必要性要用到柯西收敛准则)。
- 4
若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]上可积 ,[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex]与[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]上只有有限个点处不相等。 证明: [tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex]在[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]上可积, 且[tex=9.929x2.5]14xDmLJt4isLwqieEHGEwMATzfZioF6Ob4kHyWKRwI02Boav6J2K5sD+vOo0ypJSc9qJazfEIftbkNdMx1C4Sw==[/tex]。