• 2022-06-16
    设[tex=0.929x1.0]ep004cu6Ev4qhlMpamsNGg==[/tex]是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]维线性空间[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]上的幂零变换,其幂零指数为[tex=0.357x1.286]O1PzqaL1+AfC/NERqj1Zew==[/tex],证明:[tex=0.929x1.0]ep004cu6Ev4qhlMpamsNGg==[/tex]的[tex=3.143x1.0]NCQNLP6J50o2Cfibmm9UMQ==[/tex]标准形中一定有[tex=0.357x1.286]O1PzqaL1+AfC/NERqj1Zew==[/tex]级的[tex=3.143x1.0]NCQNLP6J50o2Cfibmm9UMQ==[/tex]块,并且求[tex=0.357x1.286]O1PzqaL1+AfC/NERqj1Zew==[/tex]级[tex=3.143x1.0]NCQNLP6J50o2Cfibmm9UMQ==[/tex]块的个数。
  • 举一反三