举一反三
- 设 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 在 [tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex] 上连续,在 [tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex] 内可导。证明在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex] 内至少存在一点 [tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex],使得[tex=7.571x2.643]oMl9s9NJfa8eLuyTQI6HjH0P3SEFjEgVhry1X5YzHG2/urD013vNXJJQd3Z32mtf[/tex]。
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在闭区间[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上连续,在开区间[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内可导,且[tex=3.929x1.286]yF7pvVInh0eInoseQrSNooOIScDfazfDCPMtH7DfBOY=[/tex],若极限[tex=6.571x2.071]MqOfsQLAB/zeVSdv1WggGLqchS9Lj/X+AmLKN2Mtp6ZjfsC8Zqc0W11hwjAr0ZsNdoUpQrAzHLckJ+1vyLPCig==[/tex]存在,证明:(1)在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内[tex=3.714x1.286]FOh2uNZfgGlH8S+OVIqrUA==[/tex];(2)在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内存在点[tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex],使[tex=7.714x2.714]gzM60KSvwplMcF58TO8u2dU/V2piuch2E1X2EWAq8T2tMW5aaDddAeP67XGZSLEjVkGIdLS/IgjJpctXT7GHGPzy+8N8PMGD0wwm/e2gq/M=[/tex];(3)在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内存在与(2)中[tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex]相异的点[tex=0.571x1.286]IvGNOcnlsPar7nw7Fd55Kg==[/tex],使[tex=7.214x1.286]gsb/5UaDnUD8XdPUF2TBamf03bdSvuobfcNAeIoG7EUwAqBBb1XK2sOUHMnHmMB0[/tex][tex=7.071x2.5]wOzTTci5ZM5vNI7JuR3k3ApIJCKN2nOrNe2VyFImWPej6nOblfzwRVRZEsKlr/pniR6jHkdk/9kZHHsPyc87eQ==[/tex]。
- 设不恒为常数的函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上连续,在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex] 内可导,且[tex=4.857x1.286]Rkfrm+InSW0h3cu+1iG9mA==[/tex],试证在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex] 内至少存在一点 [tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex],使 [tex=3.857x1.286]lzQv80ZLeUASAnm5Ehn9hY+rAdQu6nqvzbJhxnJ3MVI=[/tex]。
- 设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在 [tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上连续,在 [tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex] 内可导, [tex=3.714x1.286]c/7qSEbCZzHa0GZbNzqjfQ==[/tex], [tex=10.0x2.857]8QU3aWoJhSGnV7gONGqJzSghLQ+KEInuY2K6MnVJ+Wk5YlEQiyB8Wqv7BbxuAXo5yCzk81I8VVIfToJCJ4GmxmMLMNdMXTfhFWk0s3tSAIQ=[/tex], 试证在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内至少存在一点[tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex], 使[tex=8.5x1.286]lzQv80ZLeUASAnm5Ehn9hVJg9V+x+lqkAVSWNeYnKEvlJrsAtdq3wpYAtQsMarU6[/tex]。
- 列举一个函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]满足: [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上连续,在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内除某一点外处处可导,但在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内不存在点[tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex],使[tex=11.0x1.286]2xbqG656S43Gy9MVz3WEQAnKOB/CazKKW978URURTPewS/JSDBGjv9Hp9gsiAjc2[/tex]。
内容
- 0
设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]和[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上连续,且[tex=4.929x1.286]xsiaWGd9YFsP34fxRlwlxtn/EsqoCCFrQJ1D5ZG+agY=[/tex],[tex=4.714x1.286]7EnRp2L7gMyVlEGdnoQGDA==[/tex] . 试证:在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内至少存在一点[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex],使[tex=4.714x1.286]Okp8F8aIebhimp44oHT1Eg==[/tex] .
- 1
设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]和[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex]都在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上连续,在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内可导,[tex=4.929x1.286]Dl0gIyof8XEDmWYL1n1JtA==[/tex],且对所有[tex=3.857x1.286]xiJi7exny+S6OO8AToTvZJEy6s+q78Vh6oMiv4Z2CcE=[/tex]有[tex=5.5x1.286]2WRk5S3skabY8y+eAZX4bMCWoqnugRqu9hevAmLpNaVOJREWVg3eznJkSglGNBJB[/tex],证明[tex=4.714x1.286]+lkPvCFyneSzjv8itrp9ig==[/tex] .
- 2
设 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex], [tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex]都在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上连续, 在 [tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex] 内可导, 且 [tex=3.643x1.286]uaz8rXYVotCLmTHYJ56IbcmW7FmPkvjEmuqzGG1Ei0A=[/tex], [tex=8.286x1.286]5E/wDCX/QyKVyHRnGOzM927F2eS4xiJsy17iL44kfPg=[/tex]。 试证至少存在一点 [tex=3.786x1.286]SbN3kpDDnb/P3zq8kyuo+NJnVohO3ICcnzxPaGrEl7c=[/tex], 使[tex=8.857x1.286]lzQv80ZLeUASAnm5Ehn9hcLgzV7lu74/df+COnq6Ajb0QLH7pa1UWzVcjt8TpdpLM+dmFBCP5V66Cm/Uw8M5AQ==[/tex]。
- 3
设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]连续,且[tex=5.786x1.286]NCwsRgbPMeUgkEDxQRD8ZQ==[/tex],证明:在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内至少存在一点[tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex],使得[tex=6.786x1.286]36KpimAx+1Av6w44iio0m2Fy+d6ipErpx0Qu03YI2ns=[/tex][tex=4.714x1.286]+XuHfNNSNMlA9kCS1BPNaqAiZW4OaBWqbbrE7MZHA94=[/tex],其中[tex=0.571x1.286]QPadlhZ3vYN/Hi29gpTrFw==[/tex],[tex=0.5x1.286]SIrTd7CGXw9GcBP//JIn6w==[/tex]为任意正常数。
- 4
指出命题是否正确,若有错误,错误何在?函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]、[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex]在区间[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内均可导,且[tex=5.0x1.286]BNu6dbE7GEUnOk/n4vJRjw==[/tex],则在区间[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内有[tex=5.5x1.286]2WRk5S3skabY8y+eAZX4bMCWoqnugRqu9hevAmLpNaVOJREWVg3eznJkSglGNBJB[/tex]。