证明:函数[tex=5.929x1.357]kubaPNy9ZqCyZoo2/Sm6f3B3WOcSZvhmOlecCu37HBw=[/tex]在[tex=1.857x1.0]3eSlq+W5GTl4xGu7dhqzgw==[/tex]处二阶导数不存在.
举一反三
- 设函数[tex=6.571x1.5]sE6Aas6x+mULF9vvpSmxZ+FhRWN40wttmb1RYCf053k=[/tex]。(1)求一阶导数[tex=2.214x1.429]iNxCerDUViDWTqUmlPeFSQ==[/tex];(2)证明[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]jl8uliKUg6qIeVpZvtGL9Q==[/tex]处不存在二阶导数。
- 若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 设人射波的方程为[tex=11.643x1.357]8Nmk3O4M8bpavLGwvitBf8mr8+ULhWI1MzZFopIC0GoLMo2KOpoQw9ayz4dIPdyv[/tex],其中x、y的单位是m,t的单位是s。波在[tex=1.857x1.0]3eSlq+W5GTl4xGu7dhqzgw==[/tex]处反射。试就以下两种情况,求在振幅不衰减情况下合成驻波的方程,并指出[tex=1.857x1.0]3eSlq+W5GTl4xGu7dhqzgw==[/tex]处是波节还是波腹。(1)[tex=1.857x1.0]3eSlq+W5GTl4xGu7dhqzgw==[/tex]处是自由端;(2)[tex=1.857x1.0]3eSlq+W5GTl4xGu7dhqzgw==[/tex]处是固定端。
- 设函数$y = f({x^3})$可导,求函数的二阶导数$y'' = $( ) A: $6xf'({x^3}) + 9{x^4}f''({x^3})$ B: $6f'({x^3}) + 9{x^3}f''({x^3})$ C: $6xf'({x^3}) + 9{x^3}f''({x^3})$ D: $6{x^2}f'({x^3}) + 9{x^3}f''({x^3})$
- 对函数[tex=4.214x2.429]6tH0Bct4KP4fPnjqJeNu+zikzekSn1o9v2gKgyG5lhA=[/tex],回答下列问题:(1)函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处的左,右极限是否存在?(2)函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处是否有极限? 为什么?(3)函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex]处是否有极限? 为什么?