设 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 是 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 级实对称矩阵. 证明 : 存在实对称矩阵 [tex=0.929x1.0]ep004cu6Ev4qhlMpamsNGg==[/tex]使得 [tex=2.929x1.214]qLfCK1ZvSHsu4VEM0GGu98UJear4tHjmNm3vBZGGTAheeWeDVf2rrdw/E7PJySLb[/tex]的充分必要条件是, [tex=0.929x1.0]FV0k2T/xaj6dPCbFnkB3/g==[/tex] 为半正定矩阵.
举一反三
- 设[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]为[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶实对称矩阵,试求[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶实对称矩阵[tex=0.929x1.0]ep004cu6Ev4qhlMpamsNGg==[/tex],使得[tex=2.929x1.214]+HNIZcMaSzNwCe0LO7bsUtwNnXpVzRFjUjK29jinxk+bU2SGJ3h/vDuUc4GSQZIq[/tex].
- 设[tex=0.929x1.0]FV0k2T/xaj6dPCbFnkB3/g==[/tex]为实对称矩阵,且[tex=9.357x1.357]W3A4JLJp1yvvqX8OOb72r5QzxWJTH7Mlkl3UgdJHQQ4=[/tex],证明:[tex=0.929x1.0]FV0k2T/xaj6dPCbFnkB3/g==[/tex]是正定矩阵。
- 设 [tex=0.929x1.0]FV0k2T/xaj6dPCbFnkB3/g==[/tex]和[tex=0.929x1.0]ep004cu6Ev4qhlMpamsNGg==[/tex]是两个同阶矩阵,证明以下命题设 [tex=0.929x1.0]FV0k2T/xaj6dPCbFnkB3/g==[/tex]和[tex=0.929x1.0]ep004cu6Ev4qhlMpamsNGg==[/tex]是两个反对称矩阵,则 [tex=0.929x1.0]FV0k2T/xaj6dPCbFnkB3/g==[/tex]和[tex=0.929x1.0]ep004cu6Ev4qhlMpamsNGg==[/tex]的和与差必为发对称矩阵.
- 证明:[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级实对称矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是正定的充分必要条件为:有可逆实对称矩阵[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]使得[tex=3.286x1.214]QmOMvBPr6os2SPaojQViqQ==[/tex].
- [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级实对称矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是正定的充分必要条件为:有可逆实对称矩阵[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]使得[tex=2.714x1.214]mO08s0pAAqVsX3xXN43OmA==[/tex]。