函数f(z)在z_0点可导,f(z)-zf^' (z_0)在z_0点的导数为
举一反三
- 若函数f(z)在z_0不连续,则: (lim)┬(z→z_0 ) [f(z)-f(z_0)]=0|(lim)┬(z→z_0 ) [f(z)-f(z_0)]≠0|(lim)┬(z→z_0 ) f(z)=f(z_0)|(lim)┬(Δz→0) f(z_0+Δz)=f(z_0)
- 函数f(z)在z_0点可导,f(z)在z_0点必
- 若函数f(z)在z_0=0处的导数为1,则f(z)-z^5 f^' (z_0)在z_0点的导数为
- 如果函数$f(z)$在$z_0$处不解析,但是$f(z)$在$z_0$的某一去心邻域$0
- 函数sinz在z_0=0展开成的泰勒级数是 A: ∑_(n=0)^∞▒z^n/n! B: ∑_(n=0)^∞▒〖(-1)^n z^(n+1)/(n+1)〗 C: ∑_(n=0)^∞▒〖(-1)^n z^(2n+1)/((2n+1)!)〗 D: ∑_(n=0)^∞▒〖(-1)^n z^2n/((2n)!)〗