设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个群. 假设对于任意的[tex=2.0x1.071]vWZfluFOSO3YQwS1PayuCw==[/tex]都有[tex=2.214x1.214]oha7wOCx8qXgzV+bBd/Ktw==[/tex], 证明:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是交换群.
举一反三
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是群。证明: 如果对任意的[tex=2.357x1.214]u2lVcDsim/zlZpBEangpAw==[/tex] 都有 [tex=2.214x1.214]jX6m6TY3vI6QWjhU0nwLtg==[/tex],则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个交换群。
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是群, [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群,[tex=4.429x1.357]QrGX9k/yXcYyLBPJOQ7lzg==[/tex], 试明 :对于任意的[tex=2.0x1.071]vWZfluFOSO3YQwS1PayuCw==[/tex] 都有[tex=3.071x1.071]ZyhRHnleKzhlMlViaqaNug==[/tex]
- 证明:若群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中每一个元素都适合方程 [tex=2.214x1.214]jX6m6TY3vI6QWjhU0nwLtg==[/tex], 则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群。
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群,那么 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的商群仍是交换群。
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个群,而[tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中任意一个固定的元素,证明:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 对新运算[tex=3.786x1.0]qdFcMdOFIU5BdUlQV9p1h1K21OvjpGCN05A+gCa5iXk=[/tex]也作成一个群.