设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群,那么 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的商群仍是交换群。
举一反三
- 设[tex=2.0x1.214]h5BeVqT5Z1GL62PdxuPBZQ==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的两个有限正规子群,并且[tex=5.429x1.357]f6xGg70FDtko6pOhqcJ1dQ==[/tex]证明:如果商群 [tex=2.143x1.357]ioWgLJUkMq33E11rZv2NYg==[/tex]和 [tex=2.143x1.357]S08qmQHDqj9sWIDFkqxgdg==[/tex]都是交换群,则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]也是交换群.
- 若群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的每一个元都适合方程 [tex=2.5x1.429]qS4Sd6aZmlUQ2tlbvI3G6g==[/tex] 那么 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群.
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是群。证明: [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群的充分必要条件是映射[p=align:center][tex=5.643x1.286]vYnB+TvcXPCyhuHqL1f9eiqPnWI+P41J9NXNd2auPeI=[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的同构映射。
- 设群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的每个元素 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]都满足 [tex=2.143x1.214]V+7/hfR5UbG151kRF33SMw==[/tex],则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群。
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限交换群.证明:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是循环群的充要条件是,[tex=1.357x1.357]Bii6ZD0BaRML5x2FHhnPeg==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中所有元素的最小公倍数.