设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是群, [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群,[tex=4.429x1.357]QrGX9k/yXcYyLBPJOQ7lzg==[/tex], 试明 :对于任意的[tex=2.0x1.071]vWZfluFOSO3YQwS1PayuCw==[/tex] 都有[tex=3.071x1.071]ZyhRHnleKzhlMlViaqaNug==[/tex]
举一反三
- [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是群,[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 是循环子群且在[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中正规,则 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 的子群在[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中都正规 .
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个群. 假设对于任意的[tex=2.0x1.071]vWZfluFOSO3YQwS1PayuCw==[/tex]都有[tex=2.214x1.214]oha7wOCx8qXgzV+bBd/Ktw==[/tex], 证明:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是交换群.
- 举例说明, 如果 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 是 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 的正规子群,[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的正规子群, 则 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 不一定是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的正规子群.
- 设[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的有限子群, [tex=2.786x1.357]gGafzCAY5HUDydhqr4pyuw==[/tex].假设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有一个阶为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的子群, 证明:[tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群.
- 设[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的子群,假设 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 的任意两个左陪集的乘积仍是一个左陪集, 证明:[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的正规子群.