举一反三
- 试证有限群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的一个真子群的全部共轭子群之并不能覆盖整个群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex].结论对无限群是否成立?
- 设[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]是有限群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的正规子群. 若素数[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=2.714x1.357]YG7qvLS9bCYW3nMIPQNAvg==[/tex]互素, 则[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]包含 [tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的所有子群.
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶有限群,试证:若对[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的每一个因子[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中至多只有一个[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]阶子群,则[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是循环群.
- 如果有限群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的每个极大子群都是单群且都在[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中正规, 则[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]只能是[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]阶群, 或[tex=0.929x1.429]Oe1sITdLfgoJMrP2LLsThA==[/tex]阶群, 或[tex=1.0x1.0]I5Z2flVFjMnDwqtQo3l5FQ==[/tex]阶循环群, [tex=1.429x1.0]oXDZBpqHCK0AEtZ4kgbZLQ==[/tex]是不同的素数.
- 设[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]是群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的自同构且满足:若[tex=3.071x1.357]Q/q3LVyZlHbX74aM8tGmAg==[/tex],则[tex=2.286x1.286]xXqdu4cS3aoIlAyMLfVUZA==[/tex],证明下面结论:若[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是有限群,则[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的每个元素均可写成[tex=3.357x1.5]SoKkuOpJwNVMR/P+VdeDRRlqVKytCacdSW0pwxTq+6Y=[/tex]形式。
内容
- 0
设群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有有限个子群,证明[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]必为有限群。
- 1
设[tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]是包含在群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的中心内的一个子群. 证明 : 当[tex=2.143x1.357]AgjHffxzQb9fKjeZTf8lUg==[/tex]是循环群时,[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是交换群.
- 2
试证:群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的指数为2的子群[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]一定是[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的正规子群.
- 3
设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是有限生成的自由 Abel 群, [tex=5.0x1.357]k8PvTJe4iQVkvPfhUhxDGDsJVg6JIxgrJm26YhWlnag=[/tex]. 如果[tex=4.214x1.0]7Noj8sUXUGG6RgUkNTO6h50RlX8j8e50bLwCa2QOL+c=[/tex]是[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的一组生成元, 则[tex=2.429x1.071]47ZA+1RRmE9Gl0yWOQZ9HQ==[/tex].
- 4
群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的非平凡子群[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]称为[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的极小子群, 如果不存在子群[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]使得[tex=4.786x1.143]Dzl5s9mAcKaJyOhW6nnalZl2sR7LSXZSzGUFcgLlF5E=[/tex]. 试证: 有理数加法群[tex=0.786x1.214]Ye1cZVdr8VtT4RAHi8JqTA==[/tex]既没有极小子群也没有极大子群.