如果有限群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的每个极大子群都是单群且都在[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中正规, 则[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]只能是[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]阶群, 或[tex=0.929x1.429]Oe1sITdLfgoJMrP2LLsThA==[/tex]阶群, 或[tex=1.0x1.0]I5Z2flVFjMnDwqtQo3l5FQ==[/tex]阶循环群, [tex=1.429x1.0]oXDZBpqHCK0AEtZ4kgbZLQ==[/tex]是不同的素数.
举一反三
- 设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]是一个素数, [tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]的方幂阶的群. 试证[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的非正规子群的个数一定是[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]的倍数.
- 证明:若群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]只有有限多个子群,则[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是有限群.
- 设群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中每个非幺元的阶为2,试证[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]为[tex=2.0x1.0]D410Ra7tSYZfMF6ZtYg2KA==[/tex]群。
- 设[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]是有限群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的正规子群. 若素数[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=2.714x1.357]YG7qvLS9bCYW3nMIPQNAvg==[/tex]互素, 则[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]包含 [tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的所有子群.
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶有限群,试证:若对[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的每一个因子[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中至多只有一个[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]阶子群,则[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是循环群.