• 2022-06-19
    设(1)[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]在邻域[tex=6.0x1.357]TbjTabKPAbW5M3xylj0WxAksY6TR3a7a+hAz5Uq/zfc=[/tex]内解析,[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex]是[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]的[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]阶零点;(2)[tex=5.786x1.214]4VYh5uamsxBV1uTqa6TRuCiTmZtj0d5yUt+PWCxzD2I=[/tex]问函数[tex=10.071x2.786]+Wlo86wrHdaCMv1MzsraKR1A5GmEgFIQFngJl1xxH6fTX5rRet7Edq3iHI1ash2KUsNp+8jEMyMuhme2tKRvpg==[/tex]及函数[tex=10.071x2.786]yI78bZs0BqG8Z1ZppMaJzFnmI8xKLhTP4J9prve0KkB8OjMp0DUIU1NgAImi++QbUnB5rp80QgJXNK72s1HNShbPTxy0daNjstcKLtM7hhU=[/tex]在点[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex]的性质如何?(这里积分路径都假定在[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]内。)
  • 证明:(1)设[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex]是[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]的[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]阶零点,于是在[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex]的某邻域[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]内[tex=21.857x1.571]9jAtxdyXwy7al6BM6jXwbFymHLm5X2i/OGdFPd0gguHBQbdFIrJIC49J3pYbXUBtJOjZ6egDMEoyiiQSDZfQ469Vm8fOX4VEos6NA1ccVh/0i9jksejXPFOHchFEJGRRjCaDrmNLLVx4Cft0aEVhtTkdRWhXKQepY/k84+EaN9w=[/tex]取[tex=6.0x1.429]YA+UeTr5Bcg3V6zw7jU69Q0AhOLonVqmtrUB3zTJqZ1IWOVpRR9XRBjHRwnNkoZnen1t3n6NtfqBTYI0nmAgQA==[/tex],于是在区域[tex=4.071x1.429]rV34fuYj4Cb4aOxOBhegqFSSVUvf+ujj2WK5LgWXd0oXBGKgUcKnpZHEMccJf3A4[/tex]内[tex=17.071x1.571]9jAtxdyXwy7al6BM6jXwbFymHLm5X2i/OGdFPd0gguHBQbdFIrJIC49J3pYbXUBtJOjZ6egDMEoyiiQSDZfQ4ySDRfkkzzG5itPLR+I4cRghZ1JWNB+WvYrKbBL5yD2E[/tex]一致收敛,逐项积分可得[tex=25.786x8.214]qeiYnKXLEhyhuGRg8yLtr9qr5EjLF+HW3BZR6HnQhh+WqfJ59bzRdofxGyRi8UdQaEE/sRfLGNvj2ulhWw5fSAgVBR/ongG7Z57psGveEUg3V7sQccZKaV6CZm5xcT8mQ7r0bEMEsM7fHJ5cjYYNSdQcdM4Oeng1LeiVOY06e+dGyJey6i3mDfcsWv+9OPIU/ietFtP13JgGPOrUTKAqtfaXF/Iu3Y6Pzcxjyf7vs5K5HJec49W/47HHRcPTNPwCdoqDndS3/X2jIGwMWHDUEoah1HQ0s3HNCw5w/vJU6vWJI+z1b+s4Z+zl3CZSpHhHKm+yT6tAQUSFyAv/npIGqpDYzABxCkDQEZqITHcYq/pXbAsuby9173A6Tm5cm+FQHkczLj6ffe5aFV4uo6qQHnXcJ2fCdo2arzXvSwXaAKMU5TJwu1A+lgEp/4LrO+IEZIdL7fYj+GnHSLZ2LmzrUU3h/RekciI90UEgk/sbuUyJ51/ctt2wB5o3oM7F5i/hkBCCXD+oY6HQ13bqE4i6KbMapcVL648o2cuLdXel36hIWrWCzJX98oYcdU4AOMjZMR5hLiSl0794JO91WD1wPPLfzbTSUscew6U2XmIBQyQ=[/tex]令[tex=20.286x2.214]2+/NRj2hUN0YxzDG+3YHqLCP0n9sCmymy9BwknMfP9Enqv847miax2jwm0vVfx7BM6t1HIT8onrL2wAyKx3gVLoLZZZFS10j3M2Xhe7j9b6IiGcA/4b8MsbqXKDwkMVvHy4F+ZmV6tx5uf2EoQvkFg==[/tex]故[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex]是[tex=1.929x1.357]41/0nyx2Fl2ibFB6g3arhw==[/tex]的[tex=2.214x1.143]86/0RaEVLoYN63qUmDYMgw==[/tex]阶零点。(2)设[tex=7.357x2.786]mfn7bGjFOgkL1sqxbD1NNCc97iHpfNWZtdW7ekPeDINFRNkoKngB5i8uExjlVQq4moAE24KI2M+Vo7yIB7z6eQ==[/tex],作函数[tex=10.214x2.786]cLEQaWIAV6ZB1h2aGW0LO1ndhGylcgSzVcBf2vS0TV/DQXucWV4fQI2TnANZMcjxsRjLu0RFGsLcZki9CLapJw==[/tex],则[tex=18.357x2.786]4oJ7TvIIcRBc4RQZ31Fwx6UoOMpJO79E739/q8ob6mPjxHVSv8mT/PEzyJp4HOFCS+Jp5yMmmVhZc7CcJdDF7BPEwg0HlLZRUCgmmghIHDZtYYertLGWH4yQXs4+N6K3EcWu/eVputAqS7hRQJBbbrrZUGOU1XtbrwG4o5e/1B5X0KVaAYic4C4yecuZaASH[/tex]由(1)知[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex]为[tex=1.929x1.357]41/0nyx2Fl2ibFB6g3arhw==[/tex]的[tex=2.214x1.143]86/0RaEVLoYN63qUmDYMgw==[/tex]阶零点,故[tex=7.571x2.786]/yZ7lws3Nus/uMPMZ1L+pY3DksclxlYiT3ByAq8KalHA9JqPa6sSvz3LF05vNpiKvkaIjNQdOLRR2nW4NkZ/8w==[/tex]以[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex]为[tex=2.214x1.143]86/0RaEVLoYN63qUmDYMgw==[/tex]阶零点。即在[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex] 处,[tex=1.929x1.357]t9jzX2thd7oAj8Yx347QOQ==[/tex]取值[tex=6.857x2.786]ZYzelkpyM5jaxcUbRUJPj7Yg0jQ6FN63iu2OW3Is8kxZcpI6QGicEuDZpMbExPoQh+vraEHLvgGlmqxL8rvyEw==[/tex]次。
    本题目来自[网课答案]本页地址:https://www.wkda.cn/ask/mmyaztyjtyymajo.html

    举一反三

    内容

    • 0

      设[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex]是函数[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]的[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]阶零点,又是[tex=1.786x1.357]q7S+DkUP+kHN4l0TDsnqnA==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶零点,试问下列函数在[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex]处具有何种性质?[tex=3.786x1.357]vA5eIpsIx7tLLSrzy6uisw==[/tex]。

    • 1

      设[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex]是函数[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]的[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]阶零点,又是[tex=1.786x1.357]q7S+DkUP+kHN4l0TDsnqnA==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶零点,试问下列函数在[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex]处具有何种性质?[tex=4.286x1.357]MRPfdtM6KzlARCD+8PmXKQ==[/tex]。

    • 2

      设[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex]是函数[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]的[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]阶零点,又是[tex=1.786x1.357]q7S+DkUP+kHN4l0TDsnqnA==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶零点,试问下列函数在[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex]处具有何种性质?[tex=2.0x2.714]I3hrxqZeB/ERLtp17HD0ls6QA4Gacq8YPBrYKbJxzRs=[/tex]。

    • 3

      采用基2时间抽取FFT算法流图计算8点序列的DFT,第一级的数据顺序为 A: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] B: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] C: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7] D: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7]

    • 4

      【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=