设[tex=1.857x1.357]ygv30IlKHZITi1nzcNJ4yg==[/tex]中多项式[tex=3.714x1.286]VgLe0qw4dAI5uBnknp9bCOFzwtDsITrGVQ9OZlj0zNo=[/tex]且[tex=5.143x1.357]AvE6b9nnWtQKYry+1/2SB1UQcIIDy5c55LzwghBMrws=[/tex],[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]是一个大于[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]的整数。证明:[tex=1.857x1.357]QwcZRP/k6GQjt3RgosTUtg==[/tex]的根只能是零或单位根。
举一反三
- 设 [tex=2.0x1.357]1Drexo9YV7y1A7gaHIddFg==[/tex] 中的多项式 [tex=4.0x1.357]EoMasYQ3jhK9r+ldi16inQ==[/tex] 并且 [tex=5.786x1.357]AvE6b9nnWtQKYry+1/2SB3UceOYUmzdbda6Ss3WbH4MhlvDqnldjAmOwXkmN+zjp[/tex] 其中 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 是一个大于 1 的整数. 证明:[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=0.857x1.0]dcHR/AMhWBg4tOPVkI9qFw==[/tex] 中的根只能是零或单位根.
- 证明:次数>0 且首项系数为 1 的多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是一个不可约多项式 的充分必要条件是,对任意多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]必有(f(x), g(x))=1,或者对某一正整数[tex=6.0x1.357]bR39wf/Hz75eMrt08Xqk8wt4bXTUCgLbWgBjqC5Zmko=[/tex].
- 证明:次数大于0的首一多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是某一不可约多项式的方幂的充分必要条件是,对任意的多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]或者有(f(x), g(x))=1[tex=6.786x1.357]LBShIAKXyumE73h8+CWE0g==[/tex],或者对某一正整数[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=5.214x1.357]2b+0ZPIn+JhnqeNAq++wBM+CF08EAq9ClmGz91b+CDs=[/tex].
- 若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是次数大于零的多项式且 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 可以整除 [tex=6.357x1.357]pGmCxVYMeXbY0RBdFv1lOoYMiK8I0KiEOR7VpOaifh0=[/tex], 求 证: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的根只能是 0 或 1 的某个方根.
- 设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]次多项式[tex=3.214x1.357]kTpMd2BI8LQ4Hmb8qBngfHbPirYnb5xBfDti2joKxn0=[/tex],又[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为凸函数,试证[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]必为偶数.