设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]次多项式[tex=3.214x1.357]kTpMd2BI8LQ4Hmb8qBngfHbPirYnb5xBfDti2joKxn0=[/tex],又[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为凸函数,试证[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]必为偶数.
举一反三
- 证明:方程[tex=5.429x1.214]unY/GxrtAwP+9oZ/4P89yQ==[/tex]([tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]为正整数,[tex=1.429x1.0]EHzsglf5n1gYY95L4Z4giQ==[/tex]为实数),当[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]为偶数时至多有两个实根,当 [tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]为奇数时至多有三个实根.[br][/br][br][/br]
- 设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是[tex=2.143x1.357]dWatJMLI7pN/xzYgReR9Ug==[/tex]中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次首 1 不可约多项式, [tex=0.643x0.786]cnVwa8IjZzNSEmAUXJ8VCQ==[/tex]为[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的一个根. 则[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]共有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个彼此不同的根: [tex=6.357x1.5]lpqmP8UZMKrLGTY89gbLJNAIHFCwROQKH42ByZYClQk=[/tex].
- [tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex] 维欧氏空间中任一正交变换均可表示为不超过 [tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex] 个镜像变换之积.
- [tex=4.286x1.214]DsfUI3dsSvZIGvpC3kQ7PuXJvJskHJjrNh7q9uTzvKs=[/tex]求[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]阶导数
- 证明:次数>0 且首项系数为 1 的多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是一个不可约多项式 的充分必要条件是,对任意多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]必有(f(x), g(x))=1,或者对某一正整数[tex=6.0x1.357]bR39wf/Hz75eMrt08Xqk8wt4bXTUCgLbWgBjqC5Zmko=[/tex].