检验以下集合对于所指的线性运算是否构成实数域上的线性空间:设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=2.429x1.071]jLyhB8GAUqIuDKvKM/p5zw==[/tex]实矩阵,[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 的实系数多项式[tex=2.071x1.357]X3YzAswBl467UCBnw480bQ==[/tex]的全体,对于矩阵的加法和数量乘法;
举一反三
- 检验以下集合对于所指的线性运算是否构成实数域上的线性空间:设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=2.429x1.071]w6DRLNGfKUayn4WdAKMCow==[/tex]实数矩阵,[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 的实系数多项式 [tex=2.071x1.357]eaHPq2VmmgTOBGNjh9LC3Q==[/tex]的全体,对于矩阵的加法和数量乘法;
- 检验以下集合对于所指的线性运算是否构成实数域上的线性空间:次数等于[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]([tex=2.5x1.143]2vxx4aP6tXRn0jfc1eCMrw==[/tex])的实系数多项式的全体,对于多项式的加法和数量乘法;
- 检验以下集合对于所指的线性运算是否构成实数域上的线性空间 次数等于[tex=3.857x1.357]DRQzEb9MMrzw8oc3u87RySyrmUO/JWPXK6LtUr51LIM=[/tex] 的实系数多项式的全体,对于多项式的 加法和数量乘法
- 检验以下集合对于所指的线性运算是否构成实数域上的线性空间 全体 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 级实对称(反称,上三角形 ) 矩阵 对于矩阵的加法 和数量乘法;
- 证明:对任一[tex=2.429x1.071]jLyhB8GAUqIuDKvKM/p5zw==[/tex]复系数矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] ,存在可逆矩阵[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex],使[tex=3.0x1.214]rN84CqmtCk5MRAP5g+8tJQ==[/tex]是上三角矩阵.