证明:对任一[tex=2.429x1.071]jLyhB8GAUqIuDKvKM/p5zw==[/tex]复系数矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] ,存在可逆矩阵[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex],使[tex=3.0x1.214]rN84CqmtCk5MRAP5g+8tJQ==[/tex]是上三角矩阵.
举一反三
- 证明:[tex=6.714x1.5]wSLflQjHqW3Nq7uzvsFkqvkt1Irb7wFPnVYTJJOJLDsNrsfjUz5ddXxqnH/G59Fs[/tex] ,其中[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=2.429x1.071]jLyhB8GAUqIuDKvKM/p5zw==[/tex]矩阵([tex=2.5x1.071]YPA/u/jf9kWyoi7OceIGDw==[/tex]).
- 证明 : 对任一 [tex=2.429x1.071]kaIcCzgC6SpeVVzRje1dYA==[/tex] 复系数矩阵[tex=1.071x1.214]zMOls5fk7Qtk4M8FQeQx4A==[/tex]存在可逆矩阵 [tex=0.929x1.214]HHzGVuzn8zBGXownRa2lSA==[/tex] 使 [tex=3.143x1.214]jNJUVyn923+eHJN4sq2BY5xuJqjdUUE31UEZ9ErPkHFBLvyFl8aETFL+8XOgjFQ3r4eOr61tdhi79CKq9LZaZA==[/tex]是上三角形矩阵.
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=2.429x1.071]jLyhB8GAUqIuDKvKM/p5zw==[/tex]矩阵,[tex=3.143x1.357]xnNlsIp2wAAq+OkAnU/oIQ==[/tex],证明:[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可以表成[tex=3.929x1.357]oHgxo/VJI2syKm7RzHjvnQ==[/tex]这一类初等矩阵的乘积.
- 1) 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级实矩阵,且[tex=3.143x1.357]jmW/UUDE3QEpfgsRbhrpUQ==[/tex],证明[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可以分解成[tex=2.929x1.214]uD+loi5Ndfk9oRNW/S/5NQ==[/tex],其中[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex]是正交矩阵,[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]是一上三角矩阵:[tex=11.929x5.214]iuUhbPg6vGulP+tV2jtZCP8+fINWUOIBYuhILpF13bHy9K9vDpLieRMmpJ2zXt8P5WCwasrT/bhcftZoCydNQZIOF7QAOG8nKDGlYVlVFS54B9tzoOGOGxyZgBkYZKT5OnS6JJpBj7JGFgdTqbS50rB+DFhsxIR915FwxDxWhHkJ5lMjbTLvYpXJ8yVK3iPlHHeABZTdtvP4bnsEbOnI5ErWaTEb143EPJ88etS7vqJ6ismRUFCfZSGkgEeAhnIr[/tex]且[tex=9.071x1.357]o9hjoulZVyyj8haoQFJu/v9xY8hJWIQTjSsa3f/uF9M=[/tex],并证明这个分解是惟一的;2) 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正定矩阵,证明存在一上三角矩阵[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex],使[tex=3.071x1.143]0jLtcygfwX7LHdfUusxcIQ==[/tex].
- 设[tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]矩阵[tex=5.0x1.357]H7SDmNgtZd7dNv+vHXA0GeG4RTIHoWUo36gVzB+CYOY=[/tex][tex=16.571x4.5]D21vQN3vgKRjnD964VQ2x7eq7eqbunio9bCeoh+r05KfjexPVVPWczALL5zDDG7EkL2ZQBW4FX3gbbXtlfsvXKZn3nBozbas9pNJFZjf7eASDWTkbN+ck+EqxBMKD7ojCA1TO+4RczY4ZJ5KHTZEYF0zkawTSnoH2sj1RRIdn2yw05b4ONL43u6oSEzvka2hb09dOldTJKZ3nXlIAO06tW5oDJjlwFjA3kz8XpAxssEqH0FdZk9NfJRLCtXBpQub8EbEjQZ4Rwygs6whn87sF09P94DV3OZcnlcw0ZJRc2IEBoqir77OgrPds3HP33VM[/tex]试求一[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]矩阵[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex],使[tex=3.0x1.214]rN84CqmtCk5MRAP5g+8tJQ==[/tex] 为对角矩阵.